-
Overview
Aminoacyl-tRNA synthetase, class I, anticodon-binding domain, subdomain 2 (IPR020751)
Short name: aa-tRNA-synth_I_codon-bd_sub2
Overlapping entries
- Glutamyl/glutaminyl-tRNA synthetase (IPR000924)
- Lysine-tRNA ligase (IPR002904)
- Glutamate-tRNA ligase, bacterial/mitochondrial (IPR004527)
- Aminoacyl-tRNA synthetase, class I, anticodon-binding (IPR008925)
Description
The aminoacyl-tRNA synthetase (also known as aminoacyl-tRNA ligase) catalyse the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction [PMID: 10704480,PMID: 12458790]. These proteins differ widely in size and oligomeric state, and have limited sequence homology [PMID: 2203971]. The 20 aminoacyl-tRNA synthetases are divided into two classes, I and II. Class I aminoacyl-tRNA synthetases contain a characteristic Rossman fold catalytic domain and are mostly monomeric [PMID: 10673435]. Class II aminoacyl-tRNA synthetases share an anti-parallel beta-sheet fold flanked by alpha-helices [PMID: 8364025], and are mostly dimeric or multimeric, containing at least three conserved regions [PMID: 8274143, PMID: 2053131, PMID: 1852601]. However, tRNA binding involves an alpha-helical structure that is conserved between class I and class II synthetases. In reactions catalysed by the class I aminoacyl-tRNA synthetases, the aminoacyl group is coupled to the 2'-hydroxyl of the tRNA, while, in class II reactions, the 3'-hydroxyl site is preferred. The synthetases specific for arginine, cysteine, glutamic acid, glutamine, isoleucine, leucine, methionine, tyrosine, tryptophan, valine, and some lysine synthetases (non-eukaryotic group) belong to class I synthetases. The synthetases specific for alanine, asparagine, aspartic acid, glycine, histidine, phenylalanine, proline, serine, threonine,and some lysine synthetases (non-archaeal group), belong to class-II synthetases. Based on their mode of binding to the tRNA acceptor stem, both classes of tRNA synthetases have been subdivided into three subclasses, designated 1a, 1b, 1c and 2a, 2b, 2c [PMID: 10447505].
Structurally, an alpha-helix-bundle anticodon-binding domain characterises the class Ia synthetases, whereas the class Ib synthetases, GlnRS and GluRS have distinct anticodon-binding domains. The anticodon-binding domain has a multi-helical structure, consisting of two all-alpha subdomains. The Rossmann-fold and anticodon-binding domains are connected by a beta-alpha-alpha-beta-alpha topology ('SC fold') domain that contains the class I specific KMSKS motif [PMID: 10673435].
Contributing signatures
- G3DSA:1.10.10.350 (G3DSA:1.10.10.350)