EC - Low-specificity L-threonine aldolase

  IntEnz view ENZYME view

IntEnz Enzyme Nomenclature


Accepted name:
low-specificity L-threonine aldolase
Other name:
Systematic name:
L-threonine/L-allo-threonine acetaldehyde-lyase (glycine-forming)




Requires pyridoxal phosphate. The low-specificity L-threonine aldolase can act on both L-threonine and L-allo-threonine [1,2]. The enzyme from Escherichia coli can also act on L-threo-phenylserine and L-erythro-phenylserine [4]. The enzyme can also catalyse the aldol condensation of glycolaldehyde and glycine to form 4-hydroxy-L-threonine, an intermediate of pyridoxal phosphate biosynthesis [3]. Different from EC, L-threonine aldolase, and EC, L-allo-threonine aldolase.

Links to other databases

Enzymes and pathways: NC-IUBMB , BRENDA , ExplorEnz , ENZYME@ExPASy , KEGG , MetaCyc , UniPathway
Structural data: CSA , EC2PDB
UniProtKB/Swiss-Prot: (12) [show] [UniProt]


  1. Yamada, H., Kumagai, H., Nagate, T., Yoshida, H.
    Crystalline threonine aldolase from Candida humicola.
    Biochem. Biophys. Res. Commun. 39 : 53-58 (1970). [PMID: 5438301]
  2. Kumagai, H., Nagate, T., Yoshida, H., Yamada, H.
    Threonine aldolase from Candida humicola. II. Purification, crystallization and properties.
    Biochim. Biophys. Acta 258 : 779-790 (1972). [PMID: 5017702]
  3. Liu, J. Q., Nagata, S., Dairi, T., Misono, H., Shimizu, S., Yamada, H.
    The GLY1 gene of Saccharomyces cerevisiae encodes a low-specific L-threonine aldolase that catalyzes cleavage of L-allo-threonine and L-threonine to glycine-expression of the gene in Escherichia coli and purification and characterization of the enzyme.
    Eur. J. Biochem. 245 : 289-293 (1997). [PMID: 9151955]
  4. Liu, J. Q., Dairi, T., Itoh, N., Kataoka, M., Shimizu, S., Yamada, H.
    Gene cloning, biochemical characterization and physiological role of a thermostable low-specificity L-threonine aldolase from Escherichia coli.
    Eur. J. Biochem. 255 : 220-226 (1998). [PMID: 9692922]
  5. Kim, J., Kershner, J. P., Novikov, Y., Shoemaker, R. K., Copley, S. D.
    Three serendipitous pathways in E. coli can bypass a block in pyridoxal-5'-phosphate synthesis.
    Mol. Syst. Biol. 6 : 436 (2010). [PMID: 21119630]

[EC created 2011]