EC 1.8.3.7 - Formylglycine-generating enzyme

  IntEnz view ENZYME view

IntEnz Enzyme Nomenclature
EC 1.8.3.7

Names

Accepted name:
formylglycine-generating enzyme
Other names:
sulfatase-modifying factor 1
Cα-formylglycine-generating enzyme 1
SUMF1 (gene name)
Systematic name:
[sulfatase]-L-cysteine:oxygen oxidoreductase (3-oxo-L-alanine-forming)

Reaction

Cofactors

Comments:

Requires a copper cofactor and Ca2+. The enzyme, which is found in both prokaryotes and eukaryotes, catalyses a modification of a conserved L-cysteine residue in the active site of sulfatases, generating a unique 3-oxo-L-alanine residue that is essential for sulfatase activity. The exact nature of the thiol involved is still not clear - dithiothreitol and cysteamine are the most efficiently used thiols in vitro. Glutathione alo acts in vitro, but it is not known whether it is used in vivo.

Links to other databases

Enzymes and pathways: NC-IUBMB , BRENDA , ExplorEnz , ENZYME@ExPASy , KEGG , MetaCyc , UniPathway
Structural data: CSA , EC2PDB
Gene Ontology: GO:0120147
UniProtKB/Swiss-Prot:

References

  1. Dierks, T., Schmidt, B., von Figura, K.
    Conversion of cysteine to formylglycine: a protein modification in the endoplasmic reticulum.
    Proc. Natl. Acad. Sci. U.S.A. 94: 11963-11968 (1997). [PMID: 9342345]
  2. Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M. A., von Figura, K.
    Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine.
    J. Biol. Chem. 273: 25560-25564 (1998). [PMID: 9748219]
  3. Preusser-Kunze, A., Mariappan, M., Schmidt, B., Gande, S. L., Mutenda, K., Wenzel, D., von Figura, K., Dierks, T.
    Molecular characterization of the human Calpha-formylglycine-generating enzyme.
    J. Biol. Chem. 280: 14900-14910 (2005). [PMID: 15657036]
  4. Roeser, D., Preusser-Kunze, A., Schmidt, B., Gasow, K., Wittmann, J. G., Dierks, T., von Figura, K., Rudolph, M. G.
    A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme.
    Proc. Natl. Acad. Sci. U.S.A. 103: 81-86 (2006). [PMID: 16368756]
  5. Carlson, B. L., Ballister, E. R., Skordalakes, E., King, D. S., Breidenbach, M. A., Gilmore, S. A., Berger, J. M., Bertozzi, C. R.
    Function and structure of a prokaryotic formylglycine-generating enzyme.
    J. Biol. Chem. 283: 20117-20125 (2008). [PMID: 18390551]
  6. Holder, P. G., Jones, L. C., Drake, P. M., Barfield, R. M., Banas, S., de Hart, G. W., Baker, J., Rabuka, D.
    Reconstitution of Formylglycine-generating Enzyme with Copper(II) for Aldehyde Tag Conversion.
    J. Biol. Chem. 290: 15730-15745 (2015). [PMID: 25931126]
  7. Knop, M., Engi, P., Lemnaru, R., Seebeck, F. P.
    In Vitro Reconstitution of Formylglycine-Generating Enzymes Requires Copper(I).
    Chembiochem 16: 2147-2150 (2015). [PMID: 26403223]
  8. Knop, M., Dang, T. Q., Jeschke, G., Seebeck, F. P.
    Copper is a Cofactor of the Formylglycine-Generating Enzyme.
    Chembiochem 18: 161-165 (2017). [PMID: 27862795]
  9. Meury, M., Knop, M., Seebeck, F. P.
    Structural Basis for Copper-Oxygen Mediated C-H Bond Activation by the Formylglycine-Generating Enzyme.
    Angew. Chem. Int. Ed. Engl. 56: 8115-8119 (2017). [PMID: 28544744]

[EC 1.8.3.7 created 2014]