Please wait...
loading   Loading...
What is this view?

Binary interactions

In this tab, we display the list of interactions that you have selected using one of our search features. Despite the fact that our data are annotated to accurately reflect the interactions reported in scientific literature, the data is shown in this view as binary interactions. Whenever the data was reported as a co-complex involving more than two molecules, we store it as such in the IntAct database and post-process it so the portal can show it as binary interaction. This post-processing is the Spoke Expansion model (connects bait to all preys):



sourceExp

At any moment you can choose to display the expansion column in this view in order to see which interaction are spoke expanded and which are not.

Description of what has changed

  • We have added more download options to allow users to retrieve their interaction set using more standard formats such as PSI-MI XML and PSIMITAB (version 2.5, 2.6 or 2.7) but also XGMML, RDF and Biopax (level 2 and 3).
  • We have now four different table views : minimal(molecule names and interaction AC), basic (minimal + molecule links, interaction detection method, negative), standard(minimal + molecule species, confidences, publication details, experiment details), expanded (standard + more experiment details) and complete (all mitab 2.7 columns).

Configuring the view to your need"

In the header of the interaction table you will find a button: ‘Change Column Display’ that will show you all the columns/Table views available and allow you to update the current selected set.

Downloading the data into Standard formats"

In the header of the interaction table you will find a drop down list that contains all the formats currently supported when downloading the interaction data. Select one of them and click the export button next to the list. Please note that PSI-MI XML is only available when the interaction set is no bigger than 1000 interactions.

Opening the interaction details"

Clicking on the magnifying glass in the first column of the interaction table will open the details of the corresponding interaction in the Interaction Details tab, giving you access to more details of the manually curated record.

What is this view?

Browsing (Browse Tab)

This tab is meant to give you access to more content based on the currently selected set of interactions. Please note that linking to third party resources will only include up to 200 molecules , if you exceed this number you will see the warning icon (This number has been reduced to 125 molecules for mRNA expression). Now let’s look at the features available to you:

Limiting the scope of the current dataset with the Uniprot Taxonomy ontology

Allows users to browse the Uniprot Taxonomy hierarchy as a tree and select terms in order to narrow down their dataset. Once a term is selected, you are taken back to the interaction tab to review your dataset.

Limiting the scope of the current dataset with the GO ontology

Allows users to browse the GO hierarchy as a tree and select terms in order to narrow down their dataset. Once a term is selected, you are taken back to the interaction tab to review your dataset.

Limiting the scope of the current dataset with the ChEBI ontology

Allows users to browse the ChEBI hierarchy as a tree and select terms in order to narrow down their dataset. Once a term is selected, you are taken back to the interaction tab to review your dataset.

Bulk linking to third party resources by using involved proteins

  • Proteins by Reactome pathway: Sends your proteins to the Reactome SkyPainter that will show you the pathways in which these molecules are know to play a role.
  • Proteins by Chromosomal location: Sends your list of proteins to Ensembl’s Karyotype viewer and overlays the proteins on the chromosomes.
  • Proteins by mRNA expression: Sends your set of proteins to the ArrayExpress Atlas that will show the known gene expression based on experimental studies.
What is this view?

Searching Interactions (Search Tab)

As you can see in this tab we are now trying to give you more targeted choice to do your queries, please note that the examples provided in this tab are live links so you can simply click them to see the resulting interactions sets.

Using the Quick Search

In this search panel you are free to type anything that might relate to interactions, whether it is properties of their interactor (gene name, identifiers, GO term…) or more specific to the interaction like publication, authors, experimental detection method, ...

Some examples:

  • Try the query: imatinib
    This is a drug for which we have curated a number of interactions.
    Once you press the search button you should be taken to the Interaction Tab that lists 130 binary interactions.
    If you want to construct more complex queries we recommend you take a look at the Molecular Interaction Query Language, accessible from the quick search panel.
  • Try the query: species:yeast AND type:"direct interaction"
    This query selects all interactions involving yeast interactors that have been shown to have direct interactions. If you customize the column display of the interaction tab, you will see that not only “direct interaction” have been selected but also children terms in the PSI-MI ontology.

Using the Ontology Search

Open the Rearch Tab. This panel is specialised to give you an easy access to ontology search. So far you can search on 4 ontologies:

  • Gene Ontology
  • InterPro
  • PSI-MI
  • ChEBI

Whenever you start typing a query in this search panel, the system will search as you type and propose a list of matching controlled vocabulary terms. You can then select one of them and select matching interactions.

For example, type: cancer
You will be presented with a few choices, please note that each term is followed by the count of matching interactions in the IntAct database.

Select a term with the mouse or using the keyboard cursor keys and you will be taken to the interaction tab.

Searching the Compound chemical structure

In this panel you will be able to draw all or part of a chemical structure and search for chemical compounds. If you get any matched, you can then see all interactions involving them.

First you have to open up the chemical search panel so that the applet can load, it might take a few seconds. Then you can start drawing your structure, for instance:

Once you have drawn your structure, select Similarity and press Search. You should be presented with a list of matching compound. Now choose one molecule and click the link: IntAct interactions. You will be taken to the interaction tab to review the data.

Complex Expansion

Binary interactions generated by co-complex expansion

Why should you care about complex expansion ?

Some experimental methods such as Tandem Affinity Purification do generate molecular interactions that can involve more than 2 molecules. Despite the fact that IntAct curation team do capture the molecular interaction as they were reported in the corresponding experiment, when you search using the intact web site, the results of your query is always shown as set of binary interactions (i.e. 2 molecules). We would like to draw your attention on the fact that whenever the reported interaction was a co-complex we do apply an expansion algorithm that transform this n-ary interaction into a set of binary interactions. While none of these agorithms is perfect and will very likely generate some false positive interactions, it is useful to present the data in a consistent manner. Bear in mind that we will strive to differentiate in the search results which interactions are a real experimental binary from expanded ones.

Existing expansion algorithm

There are several known algorithm allowing to transform an n-ary interaction into a set of binaries. The illustration below present the two well known expansion model and illustrates why they can be incorrect.



sourceExp

  • Spoke expansion: Links the bait molecule to all prey molecules. If N is the count of molecule in the complex, it generated N-1 binary interactions.
  • Matrix expansion: Links all molecule to all other molecule present in the complex. If N is the count of molecule in the complex, it generated (N*(N-1))/2 binary interactions.

Now the issue (as illustrated at the bottom right of the diagram above) with these two models lies in the fact that the real complex might not be articulated around the experimental bait but instead, this bait might be linked to a smaller complex, hence most binary interaction generated by spoke and matrix expansion result in false positive.



PSICQUIC

How is the number of interactions in other databases obtained?

PSICQUIC is a standard way to access molecular interaction databases across which it repeats the same query. The number of databases providing data may vary, depending on the status of their services and only those that are active are used in this query. By clicking on the number of interactions you will be redirected to the PSICQUIC View, where you can browse the results in those other resources.

The services currently active are:

Check the PSICQUIC site for more information.

IMEx

What is the significance of the IMEx dataset?"

IMEx is a network of databases which have agreed to supply a non-redundant set of data expertly manually annotated to the same consistent detailed standard which, as such, represents a high-quality subset of the data each individually provides. The number of databases providing data may vary, depending on the status of their services and only those that are active are used in this query. By clicking on the number of interactions you will be redirected to the IMEx View, where you can browse the results in those other resources.

The services currently active are:

Check the IMEx site for more information.

What is this view?

Representation of Experimental Features

This section shows the graphical representation of experimental features, where each participant is represented as a white rectangle with a black border and a line for each hundredth amino acid. All available features are attached to their associated participant and their categories are represented in the right side of the legend. The left side of the legend dynamically shows the range statuses occuring in the shown interaction. These are the possible range statuses:

sourceExp

Interacting with the widget

Hover over a feature to see more information in a tooltip.
sourceExp

To display a single interacting region click on it and click again to display all interacting regions.
Displaying all interacting regionsDisplaying one interacting region
sourceExpsourceExp
What is this view?

Dynamic molecular interaction data

This section shows the graphical representation of dynamic molecular interactions. By default it displays all the interactions from one experiment using radio buttons to allow users to highlight interactions in different variable conditions.
Action for selection:    Search Interactions  |  Chromosome Location  |  mRNA Expression  |  Pathways

pp123pp
Names
Type
Interactions
Links
Species
Accession
Description
pp123pp
1
mak5_yeast
protein
 logo
EBI-10394
yeast (559292)
EBI-10394
ATP-dependent RNA helicase MAK5
2
mak21_yeast
protein
 logo
EBI-10944
yeast (559292)
EBI-10944
Ribosome biogenesis protein MAK21
3
mpp10_yeast
protein
 logo
EBI-11168
yeast (559292)
EBI-11168
U3 small nucleolar RNA-associated protein MPP10
4
mpg1_yeast
protein
 logo
EBI-11191
yeast (559292)
EBI-11191
Mannose-1-phosphate guanyltransferase
5
aep1_yeast
protein
 logo
EBI-11898
yeast (559292)
EBI-11898
ATPase expression protein 1, mitochondrial
6
pwp2_yeast
protein
 logo
EBI-14332
yeast (559292)
EBI-14332
Periodic tryptophan protein 2
7
rs14a_yeast
protein
 logo
EBI-14460
yeast (559292)
EBI-14460
40S ribosomal protein S14-A
8
rio1_yeast
protein
 logo
EBI-15224
yeast (559292)
EBI-15224
Serine/threonine-protein kinase RIO1
9
rl19_yeast
protein
 logo
EBI-15293
yeast (559292)
EBI-15293
60S ribosomal protein L19
10
rpn5_yeast
protein
 logo
EBI-15935
yeast (559292)
EBI-15935
26S proteasome regulatory subunit RPN5
11
scj1_yeast
protein
 logo
EBI-16711
yeast (559292)
EBI-16711
DnaJ-related protein SCJ1
12
set2_yeast
protein
 logo
EBI-16985
yeast (559292)
EBI-16985
Histone-lysine N-methyltransferase, H3 lysine-36 specific
13
ssbp1_yeast
protein
 logo
EBI-18146
yeast (559292)
EBI-18146
Single-stranded nucleic acid-binding protein
14
tf2b_yeast
protein
 logo
EBI-19123
yeast (559292)
EBI-19123
Transcription initiation factor IIB
15
2a5d_yeast
protein
 logo
EBI-1931
yeast (559292)
EBI-1931
Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit delta isoform
16
atg9_yeast
protein
 logo
EBI-34628
yeast (559292)
EBI-34628
Autophagy-related protein 9
17
bfr2_yeast
protein
 logo
EBI-36432
yeast (559292)
EBI-36432
Protein BFR2
18
acac_yeast
protein
 logo
EBI-4814
yeast (559292)
EBI-4814
Acetyl-CoA carboxylase
19
enp1_yeast
protein
 logo
EBI-6482
yeast (559292)
EBI-6482
Essential nuclear protein 1
20
gcn5_yeast
protein
 logo
EBI-7458
yeast (559292)
EBI-7458
Histone acetyltransferase GCN5
What is this view?

Using molecule Lists (List tab)

This tab will show the list of molecules involved in the currently selected set of interactions by interactor type. Further operations are available from each sub-type’s tables. However, should you need to display the whole list at once, you can do so by selecting the corresponding option in the drop down list placed at the top right hand side of the table.



Linking a selected set of molecules to third party resources

You can select a subset of the currently displayed molecules by using the tick boxed and then click one of the buttons placed in the table header to open third party resources (similarly to the ones already showed in the Browse tab).



Building a new interaction set based on a selection of molecules

Furthermore, you can also search all interactions involving your selected molecule by clicking the ‘Search interactions’ button.