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Abstract

The accuracy of base calls produced by the Illumina Genome Analyser is affected by several processes during

sequencing, with laser cross-talk and cluster phasing being prominent. We introduce an explicit statistical model

of the sequencing process that reduces the rate of miscalled bases. The novel algorithms presented are

considerable quicker than competitive base-calling methods, do not require training data and are designed to be

robust to gross errors, producing sensible results where other techniques fail.

Background

There can little doubt that the vastly increased throughput of Next-Generation Sequencing (NGS)

machines has revolutionised DNA sequencing but the reads produced are both shorter and less accurate

than those from capillary sequencing and discoveries from NGS are often verified using traditional

sequencing [1]. The challenges to be overcome to improve the accuracy and read length of NGS platforms

are different from those that were faced by capillary sequencing [2] and require different strategies to tackle

them. In particular, the phasing process — individual molecules of DNA getting out-of-step with others in

the same cluster — is complex and ultimately limits the length of reads which can be obtained from

1



cluster-based sequencing-by-synthesis methods [2]. Here we develop an explicit statistical model of the

sequencing process, including phasing and other signal-degrading processes. By implementing a base

calling algorithm based on this model, our AYB software is able to produce more accurate reads.

Our statistical model is quite generic and so applicable to all sequencing-by-synthesis and similar platforms

(sequencing-by-ligation, pyrosequencing; see Metzker [3] for a comparison) that rely on large numbers of

clusters consisting of many homogeneous DNA molecules. We concentrate on the Illumina Genome

Analyser (GA-II), both to provide a concrete foundation to aid exposition of the methods and because of

local availability of data for testing and comparison. The mechanics of sequencing-by-synthesis on the

GA-II platform have been described elsewhere in detail [3]. Here we present a brief overview to establish

context and terminology for the rest of this paper.

Fragmented single-stranded DNA is washed through the lanes of a slide, where it attaches and is amplified

to form a sequence-homogenous cluster of molecules. Sequencing progresses in steps, referred to as cycles,

with each cycle conceptually sequencing one position of DNA. For each cycle, Fluorophore-Labeled

Nucleotides (FLNs) are washed through the lanes of the slide and attach to the molecules in each cluster;

attachment of more than one nucleotide in a given cycle is prevented by the presence of a reversible

terminator element on each FLN. After the attachment process has run to completion, the intensity of

fluorescence from each cluster is recorded in four channels, each channel being a combination of illumination

with a specific laser and imaging through a specific filter. Clusters are artificially grouped into tiles, regions

of the lane consistent over cycles, whose size is constrained by the capacity of the imaging equipment. The

terminator elements and fluorophores are then cleaved from the FLNs, setting up each cluster so that in

the next cycle of sequencing appropriate FLNs should attach to the next position of sequence.

After processing the images to pick out individual clusters, the output of the sequencing machine is many

channel×cycle matrices of intensities, one matrix for each cluster. In principle the bases could be called

straight from these intensities but there are several complicating factors that must be dealt with [4] with

cross talk, phasing and dimming being of particular importance.

Cross talk between the channels occurs because, although they are chosen to help distinguish the

fluorophores, the emission spectra for the fluorophores overlap and so light from each may is recorded in

several channels. There is not a one-to-one correspondence between channels and FLNs and the

relationship between the emission of each fluorophore and the intensity observed in each channel needs to

be ascertained and corrected for.

Phasing refers to the deterioration in relationship between sequencing cycle and sequence position as the
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cluster loses coherence: on a given cycle, FLNs may be attaching to different positions on different

molecules within the cluster. There are many possible explanations for phasing: for example, a FLN might

have a defective reversible terminator element leading to the attachment of two FLNs to a molecule on a

single cycle, allowing the molecule to get ahead in the sequencing process (‘pre-phased’), or the cleaving of

the reversible terminator might fail for a cycle so the molecule lags behind when the element is finally

removed (‘post-phased’). Finally, molecules within a cluster may stop contributing to the total signal, laser

damage to the individual molecules or problems reversing the terminator element being possible causes,

leading to a decrease (dimming) in the overall emission observed from each cluster in later cycles of

sequencing.

The cross talk is a consequence of the physics of fluorophore excitation and methods for estimating it have

already been developed for dye-terminated capillary electrophoresis sequencing platforms [5]. Phasing and

dimming are more specific to NGS methods and the Illumina platform in particular, and have been

approached in a variety of ways. The Illumina base caller (Bustard) assumes a constant rate of

post-phasing and pre-phasing for all cycles [6], as do the Alta-Cyclic caller [7] and Rolexa [8], whereas

BayesCall [6] allows the phasing at each position of the sequence to depend on several of the neighbouring

bases and Ibis [9] assumes that all information about the phasing at a given cycle is contained in intensities

of the cycles either side. In contrast our method uses a complete empirical model of phasing, allowing all

aspects of this process to be determined by the data on a run-by-run, indeed tile-by-tile basis.

Results and Discussion
Phasing

Phased molecules eventually dominate the observed emission from each cluster, becoming the major

component of the signal in later cycles. Understanding this process is important for accurate base calling.

The empirical phasing matrix produced by AYB gives insight into how phasing varies as the number of

cycles increases and assumptions about how the phasing process progresses can be tested against this.

Empirical phasing from a 151 cycle run of Human sequence on an Illumina GA-IIx machine is shown in

figure 1 and, as expected, the proportion of the signal coming from the in-phase position of the read

decreases as the cycle number increases, contributing less than half of the total signal for the final 61 cycles

of the run. AYB still makes accurate base calls over these cycles, its mean per-mapped-base error rate

being 0.010 compared to 0.015 for (quality filtered) Bustard calls, and the improvement is most noticeable

for later cycles where the error rate is greatest. The improved accuracy for later cycles has a marked effect
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on the number of error-free reads, AYB producing 19.7% more than Bustard.

The proportion of molecules lagging behind (“post-phased”) increases with cycle number at an apparently

constant rate whereas the proportion of pre-phased molecules increases at a slower rate and tails off in

later cycles. This is consistent with the rate of pre-phasing being lower than post-phasing, so pre-phased

molecules tend to become in-phase and ultimately post-phased. The post-phasing and pre-phasing on the

final two cycles show a strong artefact, the amount of post-phasing sharply increasing whereas pre-phasing

disappears. A possible explanation is that the current and previous positions are being used to predict

future sequence and so compensate for the pre-phased position which can no longer be estimated from

future cycles. This effect is also apparent in the spread of weight in the phasing matrix on the last two

cycles, where many more positions have large weight compared with nearby cycles (not shown).

The contribution to the observed signal made by pre-phased and post-phased molecules can be subdivided

into the contributions from molecules pre- or post-phased by multiple positions to reveal further

asymmetry between the two types of phasing: the contribution from pre-phased molecules is predominantly

from one position ahead, whereas the contribution from post-phased molecules is spread out over many

lagging positions so, after the first 40 cycles, the immediately preceding position is no longer dominant.

Quality calibration

The accuracy of a base caller can be easily tested by sequencing DNA from a known reference genome,

mapping the called reads and then tabulating the differences. The same procedure is also useful in

calibrating the base call quality scores and for comparing the performance of different base callers. The

BWA short read aligner [10] was used to map reads back to the appropriate reference genome (edit

distance of five) for all comparisons in this paper, having been chosen for its speed and its ability to deal

with insertions and deletions. The quality calibration results below are based on control lanes of an

Illumina GA-II sequencing run, analysing 9 tiles of 76-cycle φX174 data from each of three lanes differing

in cluster density (in total 680k, 1300k and 900k clusters for lanes 2, 4 and 6 respectively). The genome of

φX174 is only 5,386 bases long and so the few tiles analysed were sufficient to cover the genome to a depth

of many tens of thousands, enabling accurate SNP correction (variants called using MAQ [11]).

The estimation and quality scoring methods used by AYB are robust and compensate for unusual clusters

to produce a reasonable measure of confidence for each base call but their accuracy will deviate due to

discordance between AYB’s assumptions and how the machines actually operate, the distribution of

emission spectra not being Gaussian for example. The relationship between the AYB predicted quality
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scores (from equation 9, transformed into a quality score) and the empirical quality scores for base calls

from the 9 tiles of 76-cycle φX174 data is shown in figure 2 (left; uncalibrated). The relationship is close to

linear for the majority of the bases but with a slope and intercept that differs from what would be

expected for a perfect fit (slope one and intercept zero).

Quality scores can be calibrated using either of two approaches: applying some parametric function to the

raw scores to improve the correspondence with empirical scores, or discretising (e.g. rounding to integers)

and using a table to convert to an empirical score. Many methods of calibration have been described in the

literature [12] but the strong linear relationship displayed in figure 2 suggests that a simple method will

suffice for AYB; here we fit a linear model to the qualities with a constant correction for each triplet

representing the local base composition of the sequence (the previous, current and next base). The

calibrated quality Qcal(bk) of the base bk at cycle k is related to its quality Q(bk) (from equation 9,

appropriately transformed) by

Qcal(bk) = αbk−1,bk,bk+1 + βQ(bk) (1)

where the base×base×base table α and the constant β are chosen to agree with previous observation.

The parameters α and β in equation 1 were found using the same mapping to the reference genome as used

to assess the quality of the 9 tiles of φX174 data. A further 18 tiles of φX174 data, 9 each from two other

lanes of the same run, were also available. Figure 2 (right; calibrated) shows the results of calibrating the

first lane using each of the three sets of constants; the agreement between observed and expected is much

closer than for the uncalibrated data.

Root Mean Squared (RMS) error has been used as a measure for the accuracy of calibration [13] and AYB

achieves an RMS of 0.79 when the data set shown in figure 2 is calibrated against itself, comparable to the

best of the within-lane results reported by Abnizova et al. [13]. In contrast, the RMS scores from

calibrating using the other two lanes are 2.57 and 1.28, highlighting the observed deviation from perfect fit.

The RMS without calibration is 8.33. As a criterion for assessing the accuracy of calibration, the RMS is

not ideal since it penalises poor calibration of low quality bases equally as much as the more important

high quality bases, and over-estimation of quality is penalised the same as under-estimation despite these

errors having different consequences for down-stream analysis. The alternative ‘Sp’ criterion, inspired by

information theoretic considerations, has been suggested (Richard Durbin, personal communication), and

the S̄p criterion defined by equation 2 is a modified form of this. The S̄p criterion for a set of reads with
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qualities qa assigned to na bases of which ea are errors, is

S̄p =
∑

a naqa + 10
ln 10

(
na − ea10qa/10

)∑
a na

(2)

which is maximised if the assigned qualities equal the empirical qualities; this maximum is equal to the

average base quality.

Applying the S̄p criterion shows that calibrating the φX174 lane 6 data using constants derived from each

of the three lanes achieves close to maximal performance (given in brackets): same lane, 29.3 (29.3); other

lanes, 28.7 (29.2) & 29.1 (29.3). Uncalibrated data achieved S̄p of 10.9 (28.2). The closeness of the S̄p

statistics for the calibrated qualities to their maxima is to be expected given how well all three calibrations

perform in the region of quality values where most of the bases are concentrated (roughly quality 25–35).

Comparing the maximal possible values of S̄p for the calibrated data to the maximum value for the

uncalibrated data shows that the recalibration is actually improving the quality of the calls by about a

unit, suggesting that the local context (the triple of bases) is important to the quality of calls. The RMS

and S̄p results for calibrating the other two lanes are similar to those reported.

The constants in equation 1 are expected to vary depending on the specific machine, sequencing chemistry

and protocol, and many other factors. The default calibration for AYB is taken from the φX174 data

described, although a tool is distributed with the software to enable users to derive calibration constants

for their own machines.

Comparison to Bustard and Swift

Swift [14] is an independently developed open-source analysis pipeline for Illumina data aimed at replacing

the Illumina software pipeline by implementing similar techniques. The results of base-calling with these

two pipelines (referred to as Swift and Bustard for the Swift and Illumina pipelines respectively) provide a

useful comparison to the performance of AYB.

The three lanes of bacteriophage φX174 data, described above, were used to compare the performance of

AYB, Bustard and Swift, the results presented here being the 9 tiles from lane 6 (900k clusters) with the

other two lanes being broadly comparable. AYB produces mappable reads from 73.3% of the 900k clusters,

of which 74.6% are perfect; Bustard produces 72.1% mappable reads, of which 71.0% are perfect; Swift

produces 68.8% mappable reads of which 58.5% are perfect. The per-base error rates are 0.7, 0.8 and 1.1%

for AYB, Bustard and Swift respectively, so AYB has the lowest error rate in addition to producing the

most mappable reads. Figure 3 shows that AYB has a lower error rate than both Bustard and Swift on all
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of the later cycles, the cumulative effect of which becomes quite large by the final couple of cycles. The

error-rate for all three methods jumps in the final position and this is probably due to pre-phasing —

signal from future positions for which there is no intensity data; here AYB does a much better job than

either of the other base-callers at reducing this artifactual spike. The Venn diagram for correct calls made

by the three methods shows that AYB has a large overlap with both of the other callers but also makes a

lot of additional correct calls.

A second comparison was based on a data set comprising an entire lane (100 tiles) of 76-cycle paired-end

reads from Bordetella pertussis, using the complete genome of the Tohma I strain as a reference. The tiles

from this run showed a large variation in the number of clusters, ranging from 345 to 82,000, with the tiles

close to the ends of the flow cell containing fewer clusters. The sequence produced was generally of low

quality, the first end of the read-pairs being particularly bad, suggesting problems during the sequencing.

Oddities in the cross talk matrix, the channels corresponding to A and C nucleotides being noticeably

brighter than those corresponding to G and T, suggest that there may have been illumination problems

with one of the lasers. Because of the problems with this run and the presence of polymorphisms relative

to the reference genome, it provides a useful comparison between Bustard, Swift and AYB when problems

occur. Due to the error characteristics of the B. pertussis data and the paucity of reads to train on (few

mappable reads and an imperfect reference), it is not possible to use base-callers based on machine learning

approaches (see below).

Mapping back to the reference revealed a marked difference in base-caller performance: AYB produced

more than four times as many perfect reads as Bustard (1,064k vs. 265k reads) and 2.5 times as many as

Swift (407k reads) for the second end of the read-pairs. AYB produces 54% more mapped reads than

Bustard and 41% more than Swift. The increased number of perfect and close to perfect reads produced by

AYB has real consequences for down-stream analysis, with the genome being covered to a depth of 27.8 for

AYB, 9.5 for Bustard and 13.8 for Swift. Greater coverage means more confident SNP and variant

detection, which in turn leads to improved mapping of reads. As well as mapping to a reference genome,

the length of contigs produced by de novo assembly is a useful guide to the quality of reads produced and

of relevance in those cases where a reference is not available. Applying Velvet [15] to the second end of the

paired-end reads, using a kmer length of 31 and default options, produces an N50 contig length of 996

bases for the AYB reads; the reads from both Bustard and Swift produce much shorter contigs on average,

with N50 lengths of 548 and 531 bases respectively. For the first end of the read, AYB produces a greater

number of perfect reads (173k reads) than Bustard (108k) or Swift (105k) and 48% more mapped reads
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than Bustard and Swift. These results are shown in figure 4, along with the same data trimmed to the first

50 bases to show that AYB still produces more accurate reads even after the worst cycles have been

discarded.

Much of the data for the 1000 Genomes project [16] has been archived and is publicly available for

reanalysis, allowing for a further comparison between the base-callers and showing that AYB can be

usefully applied to improve existing data. Two sequencing runs for NA19240 (Yoruban daughter) were

reanalysed: ERR000479 (9.6 million 45bp paired-end reads, part of ERA000013 by the Beijing Genomics

Institute) and ERR000610 (14.0 million 51bp paired-end reads, part of ERA000023 by Illumina Inc.). The

accuracy of the base-calling was assessed by mapping to the human reference provided by the 1000

Genomes Consortium, based on GRCh37. This genome has variants relative to the the sample sequenced,

but their presence penalises all callers equally. The raw intensities submitted to the archive have already

been filtered for quality, so a high proportion of the reads map back to the reference: 83% for the BGI run

and 95% for the Illumina run and there is little room for improvement. AYB produces 5% more mappable

reads for the BGI data and 2% more for the Illumina data compared to the archived reads (produced using

Bustard), a small increase but not insignificant. AYB however produces many more perfect reads, 14% and

3% more for the BGI and Illumina runs respectively, showing a gain in accuracy despite this being a

situation where AYB would not be expected to do particularly better as the number of cycles, and so

phasing, is comfortably small. The read length, vintage and error-rate of the BGI run is consistent with

the older “sticky-T” chemistry (incomplete cleavage of the ‘T’ FLN, leading to an increased concentration

in later cycles) and the improvement seen is typical for AYB on similar data. Swift failed to produce

meaningful results for many of the tiles in these two runs, probably due to a software issue rather than a

flaw in the method; a fair comparison was not possible so the results are not reported.

Comparison to the Ibis base caller

Many of the base callers in the literature reporting improved accuracy use machine learning techniques, in

particular Support Vector Machines (SVMs), to analyse intensity data. These include the Alta-Cyclic [7]

and Ibis [9] base callers, with the Ibis base caller claimed to be more accurate and requiring less processing

power. Unlike AYB and the other previous mentioned base callers, machine learning approaches require

training data, i.e. intensities and correct calls, before they can be applied to new data and this training

data should be representative of future data (for example: the same machine, sample preparation, genome

base composition, etc.). The Ibis base-caller trains a SVM for base calling at a particular cycle based on
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the intensities for the previous, current and next cycles, whereas Alta-Cyclic trains on the corrected

intensities, choosing the phasing rates to maximise the number of correct calls. Both Ibis and Alta-Cyclic

require considerable computational resources to train their models.

A test data set of 200k clusters is distributed with Ibis, representing 51 cycles of φX174 sequence taken

from a single lane of a single run. After training on the Bustard base calls for these clusters mapped back

to the reference genome to assess correctness, Ibis produces 176,894 (88.4%) reads which map back to the

genome (again using BWA with five or fewer edits relative to the reference) with 132,259 (66.1%) error-free

reads and a total per-mapped-base error rate of 0.92%. In contrast, AYB produces 174,830 (87.4%)

mappable reads with 133,137 (66.6%) error-free reads and a per-mapped-base error rate of 0.88%.

An immediate criticism of this analysis of the Ibis training data is that Ibis was trained on the same same

set of data that it was calling and so would be expected to have an advantage. For a fairer comparison

between AYB and Ibis we analysed our φX174 data, 9 tiles from each of three lanes described previously,

which contain many more clusters than the Ibis test set. For each of the three lanes, Ibis was trained on

that lane and then used to call the two other lanes and the results averaged; the effects of over-training

should be reduced since Ibis is trained on data independent from that being called but still from the same

run and the correct genome. Training and base calling for Ibis took 8, 10.5 and 10 hours for lanes 2, 4, and

6 respectively; the number of mappable reads, using the same criteria as above and averaged over the calls

from each of the two possible training lanes, is 530,674 (78.3%), 849,245 (65.4%) and 666,091 (74.0%) for

lanes 2, 4 and 6. Similarly, the numbers of error-free reads were 398,957 (58.9%), 549,843 (42.3%) and

478,454 (53.1%), and the per-mapped-base error rates were 0.85%, 1.04% and 0.78% respectively. The

results from training Ibis on the data to be called are broadly in line with those trained on independent

data, so there is no evidence that Ibis is overtraining.

AYB was substantially quicker than Ibis, taking approximately 2 minutes to analyse each tile or less than

half an hour for all 9 tiles in each lane, estimating both the cross talk and phasing separately for each tile.

The number of mappable reads was 524,387 (77.4%), 833,930 (64.2%) and 660,862 (73.4%) for lanes 2, 4

and 6 respectively, with 400,524 (59.1%), 558,112 (43.0%) and 493,235 (54.8%) error-free reads and

per-mapped-base error rates of 0.61%, 0.96% and 0.70%. If a more stringent mapping criterion is used,

only accepting those reads which map with one or no errors, then AYB produces more mapped reads than

Ibis for two of the three lanes and always has a lower per-mapped-base error rate. The difference in

performance between the two mapping criteria suggests that the majority of the small excess of mappable

reads produced by Ibis over AYB are those with many errors.
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AYB and Ibis are broadly similar in performance, despite taking different approaches to the base calling

problem, but their performance on individual lanes diverges, with Ibis generally producing slightly more

mapped reads and AYB producing more perfect reads and having a lower per-mapped-base error rate. The

two methods have noticeable differences in the types of error they make, with AYB being more accurate on

later cycles when phasing becomes the major source of errors and Ibis making more accurate predictions on

the first 30 cycles or so (see figure 5). A possible explanation for the superiority of Ibis on the initial cycles

is that it may be adjusting for differences in the cross talk between cycles whereas AYB assumes this to be

constant.

Conclusions

A particular focus when developing AYB was to make the algorithms robust to problems that might arise

during normal use, so it can be used confidently in cases where other base-callers require manual

intervention to get the best results. The B. pertussis example was presented as such a case; another is data

produced using the TraDIS technique [17] where the first few cycles of every cluster consist of known

identical sequence, causing algorithms that estimate cross talk from a single early cycle to fail; AYB

however estimates the cross talk over all cycles and produces reliable results without additional changes.

The statistical model underlying AYB has several weakness that could be addressed in future work. The

model assumes that the descriptive parameters M (cross talk) and N (systematic noise) are constant

across a tile but this is only going to be approximately true in practice: differences in illumination

(e.g. mode scrambler problems) and laser intensity will affect the cross talk and background noise; also the

expected amount of phasing might be affected by fluctuations in the chemistry. The phasing matrix

represents an average over many clusters and the actual amount of phasing at a particular cluster is

subject to stochastic variation; the fewer molecules contained in the cluster, the further from the average it

is likely to deviate and this can lead to counterintuitive consequences as a small cluster that has, by

chance, undergone little phasing will fit the average model as poorly as one that has undergone a lot of

phasing — clusters can be penalised despite giving clear signal.

Sequence-like errors, for example mutations introduced during sample preparation, short fragments ligating

together or adapter sequence, are essentially invisible to the base-caller and render it impossible to call the

original sequence accurately. Other sources of error may not appear sequence-like: for example,

microscopic particles of dust can get entangled in a cluster and produce bright artefacts for one or more

cycles. Since very bright peaks deviate from the average brightness of the read, AYB penalises these calls
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heavily and they rarely contribute to the higher quality base-calls but they also reduce the quality of the

surrounding calls due to over-correction for pre- and post-phasing. Ideally over-bright peaks would be

removed prior to analysis and treated as missing data, the actual intensity and base-call imputed from the

remaining three intensities and the position has on the neighbour cycles through the phasing correction. A

similar idea could be used to deal with clusters where intensities are missing (i.e. unrecorded, perhaps due

to image registration problems) for some cycles, producing low quality calls rather than arbitrarily treating

them as a cycle with four exactly zero intensities.

A final issue that AYB fails to account for is that of heterogeneous clusters of sequence, a common cause of

which is two clusters merging into each other during the amplification step, since there is an implicit

assumption that each cluster only contains fragments from one particular sequence. The intensities from

such clusters appear to be extremely noisy, far above the stochastic background, and AYB’s criteria to

assess model fit are misled since the effects of both constituent sequences need to be be removed to get the

residual noise. Failure to do so means that the calls from the strongest sequence get penalised for badly

fitting the model; in particular, cycles where the two constituent clusters have the same base appear much

brighter than expected given the intensities from other positions and are thus penalised despite the fact we

should be more confident about these calls. In principle heterogeneous sequence could be explicitly

estimated for each cluster, the relative brightness being used to separate contributions, but this will result

in a loss of power in the majority of cases where the cluster is homogeneous and may not result in

high-quality calls otherwise.

The speed at which tiles can be analysed is extremely important given the vast amount of data produced

by current and future platforms. AYB is much quicker than many competitive base callers, taking only a

few minutes to analyse each tile on ordinary single-core computing hardware, but even this could be

prohibitive if computing resources are limited. There are, however, several possibilities to increase the

speed of AYB. As noted previously, the estimates for the phasing and systematic noise are analytic given

the cross talk and so they can be estimated without iteration; since cross talk is a well understood problem

and good estimators already exist [5] this should result in little reduction in accuracy. AYB assumes that

the cross talk and phasing are constant within a tile and this could be strengthened by assuming they are

constant across tiles or across lanes, a similar assumption to that which Bustard and other base calling

programs make. The relevant matrices could be estimated from a subset of data and then held fixed so

AYB needs only to call bases for the majority of the data.

The phasing solution (equation 5) requires the multiplication of large matrices, an operation that is cubic
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in the number of cycles and so scales badly. Therefore, a third way to speed up the software is to change

the form of the phasing matrix, replacing the current nonparametric matrix with a more parametric model.

A simpler model with single or cycle-wise values for the phasing and pre-phasing would be soluble with

much less computation effort; both Bustard and Alta-Cyclic use phasing models that have single phasing

and pre-phasing parameters.

AYB is considerably quicker than other methods of base-calling with comparable accuracy comparable. As

the yield from the sequencing machines increases, speed of analysis becomes important and our base-calling

method offers a unique combination of speed and accuracy. In addition AYB has two other desirable

properties, not requiring training data so calls can be made where a reference sequence is unknown and

using robust methods to limit undesirable consequences of gross errors in a few clusters.

The AYB base-calling software is written in C and available under the GPL v. 3 licence from

http://www.ebi.ac.uk/goldman-srv/AYB/ along with the quality-score calibration tool. A set of utilities

for extracting and manipulating CIF format intensity data files, under the same licence as AYB, is also

available from http://www.ebi.ac.uk/goldman-srv/ciftools/.

Methods

The two major differences between AYB and other base-callers are its empirical model of the phasing

process, potentially allowing the intensities at a given cycle to depend on the entire sequence rather than

just a few neighbouring cycles, and its focus on robust algorithms so that sensible base calls are still made

even when problems have occurred during a run. Here we describe the underlying statistical model used by

AYB, the method of estimation and the techniques used to make the procedure robust.

The foundation of AYB is a mechanistic model of the sequencing process, relating what is observed at each

cycle to the underlying sequence of nucleotides. Clusters are analysed in groups, the natural such group

being a tile, with various parameters such as the phasing and cross talk matrices assumed to be constant

and common to all clusters within each group. Other parameters such as the luminescence and the

sequence are specific to each cluster.

Each cluster (indexed by i) is considered to contain homogeneous sequence, represented by the

base×position matrix Si whose (b, j) entry is one if the base at the jth position of the sequence is base ‘b’

or zero otherwise1. Each column of Si therefore contains exactly one non-zero entry. The amount of light
1So i takes values 1 . . . C, where C is the number of clusters analysed, typically of the order of 100K per tile; b ∈ {A, C, G, T};

j ∈ {1 . . .P}, where P is the number of cycles, i.e. sequence positions for which base calls will be made.
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emitted by a cluster in a given cycle is proportional to the number of FLNs bound to the cluster, which in

turn is proportional to the number of molecules in the cluster; this cluster-specific scaling is represented by

the scalar λi, referred to as the luminescence since it also incorporates a factor representing the intensity of

light incident on the cluster.

Due to phasing, the molecules within a cluster lose synchronicity with each other and the relationship

between position and cycle becomes blurred; the procession from one cycle to the next of an average

cluster is described by the position×cycle phasing matrix P . Each column of P corresponds to one cycle

and describes the distribution of sequence positions where the FLNs bind, so the (j, k) entry is the relative

proportion of FLNs bound to position j of the sequence on cycle k of the sequencing process2. As

sequencing progresses, the signal decreases as molecules randomly become inactive and stop contributing

(dimming) and this is incorporated into P by scaling its columns so each sums to the proportion of

molecules in the cluster expected to be still active. An ideal P would have ones down its leading diagonal

with all other elements being zero; a good P will be dominated by its diagonal and each column sum will

be close to one. Elements of P are non-negative, and its column sums are ≤ 1.

Finally, the emissions from each cluster are observed via the four channels and the cross talk, the

relationship between fluorophore emission and what is observed in each channel, is represented by a

channel×base (4×4) matrix M . Column b of M describes the strength of signal in each of the four

channels for a unit emission of the FLN b. In principle the cross talk is determined by the physics of

system, and so is assumed fixed throughout the run.

Putting together all the components of the sequencing process model described above, the observed

intensities Ii (a channel×cycle matrix) for cluster i is related to the underlying sequence by the relationship

Ii = λiMSiP +N + εi (3)

where N is systematic background noise for all clusters and εi is the residual error for the fit to the

intensities, an observation of a random variable with expectation zero. Both N and εi are channel×cycle

matrices.

The statistical model described by equation 3 could be fitted to the raw intensity data using a variety of

criteria (maximum likelihood, Bayesian techniques, etc.) but we chose a least squares criterion using an

iterative approach. The major reasons for the use of least squares are that analytic solutions exist for many

of the steps of the iteration, making it computationally efficient, and that the simple Iteratively reWeighted
2So j, k ∈ {1 . . .P}.
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Least Squares (IWLS) technique can be used to fit the model in a manner robust to contamination [21].

The IWLS approach is very similar to Ordinary Least Squares (OLS), seeking to minimise the sum of

squared errors over all the clusters, except that the squared error for each cluster is weighted and the

algorithm proceeds iteratively with the weights being updated between iterations; each iteration is

equivalent to the Weighted Least Squares (WLS) criterion, which has an analytic solutions. The weights

are defined by a function of how well each cluster fits the model relative to the other clusters, so badly

fitting clusters (high residual error) get progressively down-weighted. AYB uses the Cauchy function for

weighting but many alternatives have been described and are summarised in the subsection on ‘Robust

Estimation’ in Numerical Recipes [22].

Given the statistical formulation, the core of the AYB method can be described by the following six steps,

the solution of which will be described in the following sections:

1. Initialise estimates; set all weights to one.

2. Estimate global parameters (cross talk M , phasing P , systematic noise N)

3. Estimate cluster-specific luminescence λi

4. Call bases for each cluster, giving sequence Si

5. Update weights for all clusters

6. Iterate steps 2–5 to refine estimates

7. Compute quality of base calls

1. Initialisation

Initialising to good values greatly helps the speed of the AYB algorithm, reducing the number of iterations

needed until a good solution is found. An initial cross talk matrix M can be found from the intensities of

an early cycle of the run [5], making the implicit assumption that phasing does not contribute a significant

amount to these observed intensities. Since cross talk is primarily determined by physics, having a similar

form on different runs and machines, AYB instead initialises M to a known good value rather than

approximating a new starting matrix for every new set of data.

The matrix P is split into two components, the phasing and the dimming. Phasing is set so each site is only

dependent on its immediate neighbours at a fixed rate; dimming for a given cycle is set to the average over
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clusters of the intensities relative to those for the first cycle. Solving equation 3 for λiSi, assuming that the

systematic and random noise (N and εi) are zero, gives a set of corrected intensities from which bases and

luminescence can be estimated. The initial estimate of the base at each position is that which has the

greatest intensity, and the luminescence of the cluster is the mean of the intensities of the called bases.

2. Estimation of cross talk, phasing and noise

After fixing all other other parameters, equation 3 is linear in both the cross talk and phasing (a bilinear

model) and the WLS estimate for either can be found analytically. If wi is the current IWLS weight for

cluster i, and defining Bi = λiSiP and Wi = λiMSi, then the WLS estimates are:

M̂ t =

(∑
i

wiBiB
t
i −

1
w̃
B̃ B̃t

)−1(∑
i

wiBiI
t
i −

1
w̃
B̃ Ĩt

)
(4)

P̂ =

(∑
i

wiW
t
iWi −

1
w̃
W̃ t W̃

)−1(∑
i

wiW
t
i Ii −

1
w̃
W̃ t Ĩ

)
(5)

N̂ =
1
w̃

∑
i

wi (Ii − λiMSiP ) =
1
w̃

(
Ĩ − W̃P

)
(6)

where w̃ =
∑

i wi, B̃ =
∑

i wiBi, W̃ =
∑

i wiWi and Ĩ =
∑

i wiIi. Note that equations 4 and 5 do not

depend on N .

The WLS problem does not have a closed-form solution for M̂ and P̂ simultaneously but the estimates can

be found by iteratively applying equations 4 and 5, updating Wi and Bi inbetween. Each iteration

decreases the (weighted) least squares error and convergence is guaranteed by convexity. The least squares

estimate for N̂ is the matrix that makes the mean weighted residual error zero and can easily determined

once the estimates M̂ and P̂ have converged.

The columns of M define the strength of signal observed in each channel for a unit fluorophore emission

and the number of units is proportional to the cluster luminescence λi; the actual scale is arbitrary and the

expected emission λiMSiP is unchanged if the elements of M are doubled and every λi halved. This

ambiguity is resolved by choosing the scaling so the determinant of M is 1, and can be accomplished by

scaling M̂ and every λi after each iteration. There is a similar ambiguity in the scaling of P , whose columns

represent the proportion of molecules in a cluster that are contributing to the signal at a given cycle; the

phasing and luminescence are conflated since increasing the proportion of molecules contributing to the

signal by some factor increases the emission from the cluster by the same factor. Again, this ambiguity can

be resolved by scaling P so its determinant is 1 and incorporating the scaling factor into the luminescence.
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The calculations in equations 4, 5 and 6 require several matrix multiplications for every cluster, of which

there are generally many more than the number of cycles (C � P), and so are computationally demanding

for densely populated tiles. In the additional material we show show these solutions can be rearranged so

many of the multiplications can be done in advance of the iteration, meaning each step of the iteration can

be performed rapidly.

3. Estimation of luminescence

The estimation of luminescence for each cluster could be integrated into the estimation procedure for the

cross talk and phasing but, despite that iteration being based on the robust IWLS procedure, it reduces to

OLS for the luminescence since the weights used are per-cluster and so affect all cycles equally. A major

weakness of OLS estimation is that it is not very robust in the presence of contamination, outliers strongly

influencing the estimate, and such problems do occur in real data: “dust” contaminating the flow cell and

producing extremely bright peaks for one cycle of one cluster, for example. Instead, AYB estimates

luminescence separately from the intensities, after correcting them for the effects of cross talk and phasing,

using a WLS approach with per-position weights ωi;j (for position j of cluster i) derived using the Cauchy

function specific to each cluster independently of the previous weights. The corrected intensities for cluster

i, Ci, can be found from the observed intensities by rearranging equation 3:

Ci = M−1 (Ii −N)P−1 = λiSi + ε∗i (7)

where ε∗i = M−1εiP
−1 is the residual error of the corrected intensities.

If the corrected intensities for position j of cluster i are Ci;•j (the jth column of Ci) and the corresponding

sequence is Si;•j , then the WLS estimate of the cluster luminescence is

λ̂i =

∑
j ωi;jC

t
i;•jSi;•j∑

j ωi;j

which is simply the weighted average of the corrected intensities for the called bases.

4. Base calling

As well as being linear in the cross talk and phasing, the observed intensities in equation 3 are also a linear

function of the sequence and so calling bases also requires fitting of a linear model. As described,

equation 3 assumes that each element of the random error is independent and identically distributed (IID)

but this is not found to be the case in real data (results not shown). The violation of the IID assumption is
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not a problem when estimating the cross talk and phasing, since these estimates are produced from a large

number of independent clusters and so the random error is small, but is much more significant when trying

to estimate the sequence since there are many fewer, dependent, observations. Forcing the IID assumption

onto the random noise produces poor base calls (results not shown) and so correlation between the

elements of ε∗i must be taken into account — a General Linear Model (GLM).

The sequence that minimises the generalised least square error of equation 3 also minimises the generalised

least square error of equation 7 and this latter formulation, relating the sequence to the corrected

intensities, is more convenient to work with. Finding the minimum generalised least square is a type of

constrained binary quadratic programming problem and so difficult to solve exactly. Instead of solving

directly, we make the additional assumption that there is no correlation in the noise between different read

positions. The covariance Vj of the random error between nucleotides at position j can easily be estimated

from the residual errors ε∗i . The estimate of the base bi;j at position j of cluster i is the one that minimises

the least squared error

Li;bj = (Ci;•j − λi1b)
t
V −1

j (Ci;•j − λi1b)

where 1x is a vector with all elements zero other than the xth element, which is one. The optimal base is

determined exhaustively, independently of the other clusters and positions, so the complexity of calling

bases is linear in the length of the read. The sequence matrix for each cluster can then be constructed from

the called bases by setting the appropriate entries of Si as described earlier.

5. Updating weights

The weighting of the clusters plays an important part in making the AYB method robust to contamination

and other misleading observations, reducing their influence on the parameter estimates. The weight for

each cluster is calculated, after all model parameters have been fitted, using the Cauchy function so

wi = 1/(1 + L2
i /2σ

2) where L2
i is the least square error for cluster i and σ2 is a measure of the variation in

least square error (the variance, for example). In contrast to OLS, where every cluster would receive a

weight of one, the weighting function means that only perfect observations, those with a least square error

of zero, receive full weight whereas worse-fitting observations receive progressively lower weights.

6. Iteration and termination

As the luminescence and individual bases are estimated using a different criterion to that used to estimate

the cross talk and phasing, the least squares error when the parameter estimation and base calling steps
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are iterated is not guaranteed to decrease. Theoretically this can lead to problems with convergence but

this was not found to be the case, a small number of cycles sufficing to get good estimates. Numerical

experiments suggest that three to five iterations are sufficient, with little change in accuracy for addition

iterations (results not shown).

7. Quality of calls

To differentiate between good and bad reads, each base is assigned a quality score — a measure of the

probability that it has been correctly called. Commonly these are reported as Phred scores:

QPhred = −10 log10 e, where e is the probability of a base being incorrect [12]. It is trivial to convert these

scores to and from probabilities, so one only needs to assess the probability of each call being incorrect.

A quality score should combine two pieces of information: the relative confidence between bases that they

are correct, and whether the model is a good representation of the data and can reliably assess base

confidence. We treat base calling as a model selection problem, choosing between the four models ‘A’, ‘C’,

‘G’ and ‘T’ for each cycle of each cluster, and apply Bayes theorem to get the posterior probability pi;bj

that the base at position j in cluster i is b:

pi;bj =
πbfi;bj∑

x∈{A,C,G,T} πxfi;xj
(8)

where fi;xj = exp(− 1
2Li;xj) is the (scaled) probability density of the observed intensities and πx is the prior

probability of base x. The particular form of fi;bj comes from assuming that the random error is

distributed as multivariate normal, as assumed for calling the bases, but other elliptical distributions would

also be appropriate.

Equation 8 does not incorporate any information about how well all the four models A, C, G & T fit a

particular position; nor does the original probabilistic model allow for rare large deviations. It is possible

that all four models could fit the data badly, implying the corrected intensities do not represent sequence,

but that one model is favoured relative to the others and a base is called with spurious confidence. A small

correction term, τ , is incorporated to avoid this problem, representing the chance that the observation is

contaminated and so the model is a poor description of what actually happened. Adding such a constant

defines an M-estimator [23] and is related to the robust likelihood approach to estimation (attributed to

Colin Mallows [24], pg 59–60). Analogous to the posterior probability of a base being correct, a modified

probability of correctness, p∗i;bj , is defined by:
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p∗i;bj =
πb (τ + fi;bj)∑

x∈{A,C,G,T} πx(τ + fi;xj)
(9)

If a base b fits well then it has a small least squared error and the value of fi;bj is close to 1 and so

dominates τ . When all bases are unlikely and τ dominates, the effect is to pull the posterior probabilities

back towards the prior — rather than being over-confident in an ill-fitting base, no effective prediction is

made.

Competing interests

None declared.

Authors contributions

TM designed the study, derived the statistical models and implemented them in software, carried out the

comparisons and performed the statistical analysis, and drafted the manuscript. NG conceived and helped

to design the study and to draft the manuscript. All authors read and approved the final manuscript.

Additional Files

The following additional data are available with the online version of this paper. Additional data file 1 is a

document describing and deriving how to calculate least-squares estimates of the phasing and cross-talk

matrices iteratively in a manner that does not require a summation over all clusters during each step of the

iteration.

Acknowledgements

The development of AYB has benefited from the help of many people, for both advice and feedback about

performance ‘in the wild’. In particular we would like to thank Ewan Birney (EMBL-EBI); Jonathon Blake

(EMBL); Gordon Brown (CRI), Kevin Howe (formerly CRI); Tony Cox, Klaus Maisinger, Lisa Murray

(Illumina Inc.); Christophe Dessimoz & Christian Ledergerber (ETH Zürich); Richard Durbin, Tom Skelly
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Figures
Figure 1 - Phasing progression across 151 cycles

Progression of phasing for 151 cycles of a GA-II run containing human sequence, split into average

contributions from pre-phased, post-phased and in-phase (correct) molecules over all clusters. The bar

chart above the phasing graph shows how the proportion of the signal contributed by the correct read

position decreases as the cycle number increases, from almost one (no phasing) on the first few cycles to

less than 0.5 (phasing dominates) on the last 61 cycles.

Figure 2 - Quality of base calls before and after calibration

Quality of calls for 76 cycles of φX174 data before (left) and after calibration (right). The actual error rate

is estimated from real data by mapping the reads back to a known reference, with 99% confidence intervals

calculated by transforming Wilson’s interval for the binomial proportion [25]. The dashed lines are the

lines of best fit, minimising the least squared error weighted by the number of bases in each bin, and the

solid line y = x represents perfect calibration. The calibrated graph shows calibration curves using three

different lanes, the best fitting being calibration of the data onto itself.

Figure 3 - Comparison of error rates between Bustard, Swift and AYB

Comparison of per-cycle error rates at higher cycle numbers between AYB, Bustard and Swift from 900k

unfiltered reads of 76-cycle φX174 data. The inset graph shows the proportion of mapped reads with a

given number of differences compared to the reference and the Venn diagram shows the overlap in

successfully mapped reads between the methods. A further 230,290 reads were not mappable using any of

these base callers.

Figure 4 - Number of reads mapped to B. pertussis

Number of mapped reads and base substitution errors in 4.2 million reads of 76-cycle paired-end B.

pertussis data relative to a reference genome. The base callers Bustard, Swift and AYB are compared on

ends 1 and 2 of the reads by the number of differences to the reference, to a maximum of five differences,
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with the total percentage of mapped reads mapped displayed at the top of each bar. Results for both the

full reads and reads trimmed to the first 50 cycles are shown.

Figure 5 - Comparison of error rates between Ibis and AYB

The percentage of mapped reads called by Ibis from 76 cycles of φX174 data that contain an error on a

given cycle (bars, left axis) and the difference between the percentage error of AYB and Ibis (circles, right

axis). On the final cycle, Ibis has an error rate of 4.7% whereas AYB has an error rate of 3.4%, giving a

difference of -1.2%.
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