G2P is a publicly-accessible online system designed to facilitate the development, validation, curation and distribution of large-scale, evidence-based datasets for use in diagnostic variant filtering. Each G2P entry associates an allelic requirement and a mutational consequence at a defined locus with a disease entity. A confidence level and evidence link are assigned to each entry.
Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP.
Thormann A, Halachev M, McLaren W, Moore DJ, Svinti V, Campbell A, Kerr SM, Tischkowitz M, Hunt SE, Dunlop MG, Hurles ME, Wright CF, Firth HV, Cunningham F, FitzPatrick DR (2019).
Eva Lenassi, Ana Carvalho, Anja Thormann, Liam Abrahams, Gavin Arno, Tracy Fletcher, Claire Hardcastle, Javier Lopez, Sarah E Hunt, Patrick Short, Panagiotis I Sergouniotis, Michel Michaelides, Andrew Webster, Fiona Cunningham, Simon C Ramsden, Dalia Kasperaviciute, David R Fitzpatrick, Genomics England Research Consortium, Graeme C Black, Jamie M Ellingford (2023).
Katherine S Josephs, Angharad M Roberts, Pantazis Theotokis, Roddy Walsh, Philip J Ostrowski, Matthew Edwards, Andrew Fleming, Courtney Thaxton, Jason D Roberts, Melanie Care, Wojciech Zareba, Arnon Adler, Amy C Sturm, Rafik Tadros, Valeria Novelli, Emma Owens, Lucas Bronicki, Olga Jarinova, Bert Callewaert, Stacey Peters, Tom Lumbers, Elizabeth Jordan, Babken Asatryan, Neesha Krishnan, Ray E Hershberger, C. Anwar A. Chahal, Andrew P. Landstrom, Cynthia James, Elizabeth M McNally, Daniel P Judge, Peter van Tintelen, Arthur Wilde, Michael Gollob, Jodie Ingles, James S Ware (2023).
If you have used Gene2Phenotype in your work please cite the website and the most recent article