RNA sequencing for the study of gene expression regulation

Ângela Teresa Filimon Gonçalves
European Bioinformatics Institute
Darwin College

A thesis submitted to the University of Cambridge for the degree of $Doctor\ of\ Philosophy$

September 2012

Declaration of Originality

This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text.

The text in this thesis does not exceed the limit of 60,000 words set by the Biology Degree Committee.

RNA sequencing for the study of gene expression regulation Ângela Teresa Filimon Gonçalves Summary

The process by which information encoded in an organism's DNA is used in the synthesis of functional cell products is known as gene expression. In recent years, sequencing of RNA (RNA-seq) has emerged as the preferred technology for the simultaneous measurement of transcript sequences and their abundance.

The analysis of RNA-seq data presents novel challenges and many methods have been developed for the purpose of mapping reads to genomic features and expression quantification. In the first part of my thesis I developed an R based pipeline for pre-processing, expression estimation and data quality assessment of RNA-seq datasets, which formed the basis for my subsequent work on the evolution of gene expression regulation in mammals.

Since changes in gene expression levels are thought to underlie many of the phenotypic differences between species, identifying and characterising the regulatory mechanisms responsible for these changes is an important goal of molecular biology. For this, I studied the regulatory divergence of liver gene expression and of isoform usage between mouse strains. I demonstrate that gene expression diverges extensively between the strains and propose that the regulatory mechanism underlying divergent expression between two closely related mammalian species is a combination of variants that arise in cis and in trans. Isoform usage diverges to a lesser extent and appears to display a larger contribution of trans acting regulatory elements to its regulation, suggesting that isoform usage may be under different evolutionary constraints. These observations have important implications for understanding mammalian gene expression divergence and for understanding how speciation occurs.

Acknowledgements

This work was carried out in the Functional Genomics Group at the European Bioinformatics Institute and was funded by the European Molecular Biology Laboratory.

I would like to thank my supervisor Alvis Brazma for his support over these years. I am very grateful for his guidance, openness and positivity. I am also indebted to Wolfgang Huber, for his excellent advice, and to Duncan Odom and Paul Flicek, who have allowed me to be part of the great FOG team. Their knowledge and enthusiasm have been most invaluable and inspiring. Thanks also to Sarah Leigh-Brown, Klara Stefflova and David Thybert for generously sharing their knowledge with me and for all the stimulating and fun meetings we have had.

I can not thank John Marioni enough for his outstanding support, in particular of the work described in the last two chapters of this thesis. It has been a great pleasure working with him. I am also indebted to John, Ernest Turro, Petra Schwalie and Nenad Bartonicek for their valuable comments and for proofreading this thesis.

My thanks to all the Functional Genomics Group members, in particular to Mar Gonzalez-Porta, Gabriella Rustici and Johan Rung for all the helpful discussions, Mar and Gabriella for their companionship in teaching bioinformatics around the world and Lynn French for greatly facilitating my life with travel and bureaucratic support.

I have been fortunate to have spent my time at the EBI among an extraordinary group of fellow PhD students and Postdocs. They have all enriched my life and made my stay here unforgettable. A special thanks to Nenad Bartonicek, Anika Oellrich, André Faure, Steven Wilder, Mikhail Spivakov, Joseph Foster and Tim Wiegels, who have been there from the beginning. Mostly, I want to thank Petra Schwalie with whom it is the greatest pleasure to discuss work, life and just about anything. She has become a dear friend.

Looking back into the past, this thesis would not have happened without my master's thesis supervisor Ernesto Costa, who got me interested in gene expression regulation in the first place. I hope he enjoys reading this work!

Finally, I thank my amazing parents, who have always done so much for me, and Ernest Turro, who has patiently supported me and made numerous contributions to my work throughout.

Contents

\mathbf{C}	Contents					
1	Intr	roduct	ion	1		
	1.1	The re	egulation of gene expression	2		
		1.1.1	Regulation of transcription initiation	3		
		1.1.2	Transcript elongation control	4		
		1.1.3	Regulation by chromatin structure and DNA methylation	5		
		1.1.4	Regulation of RNA processing	9		
		1.1.5	Regulation of RNA degradation	14		
		1.1.6	RNA editing	16		
	1.2	Seque	nce divergence to phenotypic divergence	18		
		1.2.1	DNA sequence divergence	18		
		1.2.2	Gene regulatory divergence	19		
	1.3	Measu	uring gene expression with RNA sequencing	22		
		1.3.1	RNA sequencing experiment workflow	23		
		1.3.2	Read mapping strategies	25		
		1.3.3	Expression quantification	32		
		1.3.4	Expression normalisation	35		
		1.3.5	Differential expression	40		
2	An	RNA-	seq analysis pipeline	43		
	2.1	Introd	luction	44		
	2.2	Metho	ods	45		
		2.2.1	The analysis pipeline	45		
		2.2.2	R cloud usage and analysis of public data			

	2.3	Discu	ssion	49
3	Coı	npens	$atory \ cis \ and \ trans \ regulation \ dominates \ the \ evolution \ or$	f
	mo	use ge	ne expression	5 1
	3.1	Introd	duction	52
	3.2	Resul	ts	55
		3.2.1	Allele specific expression estimates can be obtained for 30%	
			of annotated mouse genes	56
		3.2.2	Approximately a quarter of genes are differentially expressed	
			between C57BL/6J and CAST/EiJ	58
		3.2.3	Expression levels of circadian rhythm genes varies widely	58
		3.2.4	The identification of imprinted genes is strengthened by mul-	
			tiple replicates	61
		3.2.5	Most gene expression divergence is caused by a combination	
			of <i>cis</i> and <i>trans</i> regulatory variants	64
		3.2.6	Genes with regulatory divergence in <i>trans</i> show stronger se-	
			quence constraint	69
	3.3	Discu	ssion	71
		3.3.1	Phenotypic diversity and intra-species heterogeneity in expres-	
			sion	73
		3.3.2	A continuum of imprinting	74
		3.3.3	Using the hybrid system to study the divergence of gene ex-	
			pression levels	74
4	Dec	couplin	ng of isoform and gene expression evolution in mice	78
				79
	4.2	Resul	ts	80
		4.2.1	Isoform level estimates reveal complex patterns of imprinting.	84
		4.2.2	Approximately 8% of genes have differential isoform usage be-	
			tween C57BL/6J and CAST/EiJ	87
		4.2.3	Most isoform regulatory divergence is caused by regulatory	٠.
		9	variants in trans	90
	4.3	Discus	ssion	93

CONTENTS

5	Concluding remarks							
\mathbf{A}	Sup	Supplementary material for Chapter 3						
	imental methods	. 102						
		A.1.1	Animal housing and handling	. 102				
		A.1.2	Sequencing library preparation	. 103				
		A.1.3	Pyrosequencing	. 103				
	A.2	Supple	ementary Figures	. 105				
	A.3	Supple	ementary Tables	. 113				
		A.3.1	Supplementary Table A.1	. 113				
		A.3.2	Supplementary Table A.2	. 115				
		A.3.3	Supplementary Table A.3	. 130				
		A.3.4	Supplementary Table A.4	. 149				
		A.3.5	Supplementary Table A.5	. 154				
В	Sup	pleme	ntary material for Chapter 4	155				
	B.1	Supple	ementary Figures	. 155				
	B.2	Supple	ementary Tables	. 157				
		B.2.1	Supplementary Table B.1	. 157				
\mathbf{C}	Full	list of	f publications	159				
Re	efere	nces		161				

Chapter 1

Introduction

The hereditary information of an eukaryotic organism is encoded in a genome comprising molecules of deoxyribonucleic acid (DNA) packed and organised in structures called chromosomes. The information in a DNA molecule is represented by a sequence of smaller molecules called nucleotides containing one of four types of bases (adenine - A, thymine - T, guanine - G or cytosine - C) and by other chemical and structural features. Each DNA molecule is composed of two such sequences known as strands held together by hydrogen bonds which can only form between specific pairs of nucleotides: A with T and G with C. Because of this relationship the two strands contain the same information and are said to be complementary to one another.

Within a multicellular organism and throughout its life, its genome stays mostly unchanged. In fact, almost all cells of an organism contain an almost exact copy of the DNA that was in the fertilised egg from which the whole organism developed. Its cells, however, can have very distinct appearances, functions and respond differently to extracellular stimuli. These differences are possible because cells make different use of stretches of the DNA, called genes, as templates to build functional cellular products in a process called gene expression. The cellular products and their abundance are the result of the integration of the present cell state and external signals by a complex regulatory system which is itself encoded in the DNA sequence and structure.

In the first step of gene expression, known as transcription, the information in the DNA is used to create ribonucleic acid molecules (RNA). RNA is synthesised using one of the DNA strands as a template and has the same chemical structure except that thymine is replaced by uracil (U). Some RNA molecules can be the end product in themselves and some can in turn be used as a template for the creation of other molecules, proteins, in a process called translation. Proteins are composed of one or more sequences of molecules called amino acids, each of which is determined by an RNA nucleotide sequence in which each successive triplet corresponds to one amino acid. According to this distinction between RNAs that are used as a template for proteins and the ones that are not, RNAs are classified as either messenger RNAs (mRNAs) or non-coding RNAs (ncRNAs).

While the presence of specific RNA molecules does not in itself guarantee the presence of their functional end products, due to regulation at multiple levels along the specific pathways for their production, RNA levels are often used as a proxy for their abundance and ultimately as a surrogate to phenotypes such as disease, cell or tissue type or developmental stage [151]. Furthermore, unlike other cellular products, RNA samples can be more easily and reproducibly measured in a high-throughput manner with a variety of current technologies [93][33].

In this chapter I present the basics of the processes affecting the abundance and diversity of the pool of RNA molecules in a metazoan (animal) cell and how this regulatory mechanism evolves in a population over time. I also provide an overview of the current high throughput technologies used in measuring gene expression, followed by a summary of computational methods for quantifying gene expression based on the determination of the sequence of RNA molecules (RNA-seq).

1.1 The regulation of gene expression

The abundance of different RNAs (also called transcripts) in a cell at any given point is controlled by several regulatory systems that influence each other to varying degrees. These systems allow cells to respond to environmental changes and maintain their cell type specific expression patterns. The principal regulatory systems include:

- 1. the regulation of the timing and rate of transcription initiation and elongation,
- 2. the regulation of the processing of transcripts,
- 3. the regulation of the rate of transcript degradation,

4. and the post-transcriptional modification of transcripts.

1.1.1 Regulation of transcription initiation

The process of gene expression begins with transcription in the cell nucleus. The place where a gene starts to be transcribed is called the transcription start site (TSS, Fig.1.1). This site is immediately preceded by a region called the promoter with which the enzyme that catalyses RNA synthesis, called RNA polymerase (Pol), forms a chemical bond (binds).

There are three types of polymerase in metazoans which mainly transcribe specific classes of RNAs. The first one, RNA Pol I, transcribes ribosomal RNAs (rRNAs) which are incorporated into molecules (called ribosomes) involved in the synthesis of proteins. rRNAs are the most abundant class of RNAs in the cell and their genes are present in multiple copies in eukaryotic genomes [140]. The second type of polymerase, RNA Pol II, transcribes genes that produce mRNAs, long ncRNAs, and a number of small regulatory ncRNAs which, by a combination of base pairing and interaction with proteins, regulate other RNAs. Finally, RNA Pol III transcribes other small ncRNAs including transfer RNAs (tRNAs), which are molecules involved in transferring amino acids to growing protein polypeptides.

For the RNA polymerases to bind and start transcribing, several other facilitating proteins are needed. These include the so called general transcription factors (TFs) which bind the promoter region of every gene. The binding of the general TFs on their own produces only low levels of transcriptional activity. This activity is increased or decreased by other sequence-specific TFs, estimated to be around 1400 in humans [149], which bind to regions of the DNA called enhancers and silencers. A gene can have several enhancer/silencer regions and these can exist inside and outside the gene region, occurring sometimes thousands of nucleotides away from it (Fig.1.1). Most sequence specific TFs and the factors assembled at the promoter interact via a general mediator complex and a number of proteins that do not bind the DNA themselves called co-factors. While the general TFs and the mediator complex are common to the transcriptional machinery of every gene, TFs and co-factors can vary for each gene. Fluctuations on the concentration of TFs and co-factors thus influences the timing and rate of transcription of genes, providing a

mechanism of gene expression regulation.

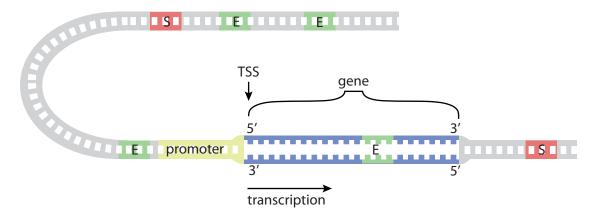


Figure 1.1: Schematic representation of an eukaryotic gene and the regulatory regions that control transcription initiation. One RNA polymerase and several General Transcription Factors bind to the promoter region of the gene but alone this basic transcriptional machinery produces only basal levels of expression. Further regulatory regions, enhancers (E) and silencers (S), provide binding sites for other Transcription Factors which interact with the basic transcriptional machinery and affect the gene's rate of transcription. These regulatory regions can occur thousands of nucleotides away from the gene requiring the DNA to loop for the regulatory proteins to interact. The two DNA strands are separated, transcription initiates at the TSS and proceeds along one of the strands, called the template strand, from the 3' to the 5' end. Modified from [2].

1.1.2 Transcript elongation control

After the RNA polymerase is recruited to the promoter region of a gene and forms a complex with a large number of transcription factors it enters elongation phase in which it unwinds a small section of the DNA and moves along it synthesising a new RNA molecule. In addition to regulation at the level of transcription initiation there is also widespread evidence for regulation of the rate of Pol II transcription by control of the elongation phase. Transcription by Pol II begins slowly and inefficiently and for thousands of animal genes slows down or halts proximally to the promoter [170]. From this state transcription may terminate or enter a productive phase of elongation [136].

The first case, in which transcription is terminated, is supported by two key points: 1) for a large number of animal promoters transcription can start in both directions (59% of annotated human genes [24] and 67% of expressed mouse genes have evidence for antisense transcription [135]), although in most cases mature transcripts only arise from one direction [24][116][135] and 2) there is evidence that transcription will initiate for many genes although for most it will not be allowed to proceed [170]. The mechanism by which productive elongation proceeds preferentially in the direction of known genes is currently unclear. However it may be explained by signals present in the promoter region, the necessity of an interaction between the polymerase and splicing factor proteins (splicing factors are described in Section 1.1.4), and competition between sense and anti-sense transcription complexes [136].

In the second case transcription is paused in a process facilitated by the DSIF and NELF protein complexes and subsequently resumed in a process mediated by the P-TEFb elongation factor. The duration of this pause varies for different genes [97][23] and is a rate-limiting step for the expression of many genes [42].

1.1.3 Regulation by chromatin structure and DNA methylation

In order for the RNA polymerase and TFs to bind the gene's regulatory regions and for the polymerase to move along the genes, they must be accessible. However DNA in chromosomes is densely packed with proteins which can influence its accessibility. This complex of DNA and proteins is called chromatin and it consists of repetitive units called nucleosomes occurring every so often along the DNA, with each nucleosome comprising about 146-147 DNA base pairs wrapped around eight histone proteins. An additional linker histone wraps another 20 bases and is involved in compacting the chromatin into higher-order structures [18].

As the DNA in a nucleosome is generally inaccessible it is necessary to modify the chromatin structure in order to allow transcription. Chromatin structure has thus emerged as a crucial regulatory mechanism of transcription. The different mechanisms through which chromatin is dynamically modified to promote or repress transcription include the action of chromatin remodelling complexes, which restructure and mobilise the nucleosomes, the usage of different histone variants

and the action of modifying complexes that add or remove chemical modifications to the histones [128]. Importantly, there is evidence for an interaction between the factors involved in transcription initiation and elongation and the modification of chromatin [40].

An additional layer of regulation of gene expression comes from a chemical modification process called DNA methylation. Methylation in multicellular eukaryotes primarily involves the addition of a methyl group to cytosine nucleotides, usually at locations in the DNA sequence where a cytosine is followed by a guanine (CpG sites). Methylation is associated with the inhibition of gene expression via two mechanisms: the chemical modification of the cytosines inhibits the binding of regulatory proteins to the DNA; and the binding of Methyl-CpG-binding proteins (MBPs) to methylated CpGs recruits co-repressor molecules which silence transcription and modify local chromatin [71].

Chromatin structure and DNA methylation add information to the DNA without altering the genetic sequence. Importantly, this information can be preserved throughout cell division [68]. This type of heritable change that does not affect the DNA sequence is known as an epigenetic change. Epigenetic mechanisms are thought to play an important role in organism development and maintenance of cell type specific expression. One example is the inactivation of one of the X chromosomes in mammalian females. Mammals are diploid organisms which have two homologous copies of each chromosome, one inherited from the mother and one from the father. While females have two X chromosomes, males have only one and if left unregulated this would result in higher expression of the genes in the X chromosome in females. However, expression levels are equalised between sexes by the condensation into heterochromatin of one of the X chromosomes in females. The choice of which X chromosome is inactivated happens early in development at random for each cell and is subsequently inherited by epigenetic mechanisms through cell division.

Most epigenetic changes will be maintained only during an organism's life since they are usually lost in development. For instance, most methylation marks are lost in a genome wide wave of demethylation that occurs shortly after fertilisation. Some epigenetic changes, however, such as genomic imprinting of genes in the autosomal chromosomes (all chromosomes which are not sex chromosomes), can be preserved through generations. In genomically imprinted genes, one of the two versions (or alleles) of each gene is silenced depending on its parent of origin. DNA methylation is thought to be the most important mechanism leading to this silencing thought histone modifications may also play a minor role [68].

There are at present around 100 genes that have been validated as being imprinted in at least one tissue in mouse. Some genes are known to be imprinted in a tissue-specific manner although the extent of this specificity is still largely unknown [38][165]. Many mammalian imprinted genes are clustered in the genome with only a few occurring in isolation. For instance, more than 80% of known imprinted genes occur in one of the 16 clusters of two or more genes identified to date [9]. Almost all of these clusters contain several protein-coding and noncoding genes and are regulated by a single CpG-rich DNA region (called imprinting control region or ICR) present in the same chromosome (said to act in cis) that can be methylated in one of the parental alleles.

Imprinted genes can be marked by methylation according to their presence in an egg or a sperm resulting in the stable silencing of either the maternal allele or the paternal allele (Figure 1.2). This type of differential methylation (or DMR) is called germline DMR. Besides germline DMRs, other so called somatic DMRs exist at which the methylation is still parent-of-origin specific but is only acquired after fertilisation. While most somatic DMRs are thought to depend on the regulation of a previous germline DMR, the mechanisms by which de novo methylation occurs are not yet fully understood [64].

Two mechanisms for DMR mediated gene silencing have so far been described for the small number of known imprinted clusters: the parental-specific binding of the insulator protein CTCF to an unmethylated ICR, and the expression of an antisense non coding gene whose promoter is unmethylated [61]. The latter is the mechanism controlling three known mouse maternally expressed clusters (Igf2r, Kcnq1 and Gnas) for which the noncoding genes occurring in the cluster have been shown to be required for correct imprinting [72]. One of the best known examples of this type of regulation is the Igf2r cluster which comprises three maternally expressed genes, Igf2r, Slc22a2 and Slc22a3, and one paternally expressed non-coding gene Airn (Figure 1.3). The Airn gene is expressed in an antisense direction to Igf2r. In the paternal allele the Airn promoter is not methylated, the gene is expressed and,

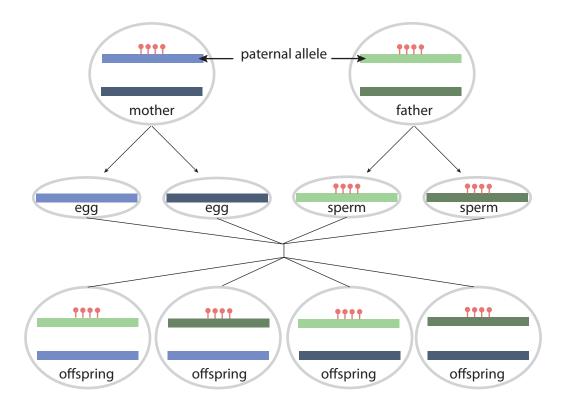


Figure 1.2: Schematic drawing of paternal imprinting via germline DMR. In the somatic cells of both parents the allele inherited from the father is imprinted (light coloured alleles with methylation marks in red). The imprinting patterns are removed in the germ cells and after meiosis new sex specific methylation patterns are set in the gametes. In the offspring's somatic cells it is again the allele inherited from the father (green coloured) that is imprinted. Modified from [2].

possibly due to transcriptional interference, Igf2r is silenced. On the maternal allele, the Airn promoter is methylated and silenced while Igf2r is expressed. Furthermore, Airn also controls the expression of Slc22a2 and Slc22a3 [9].

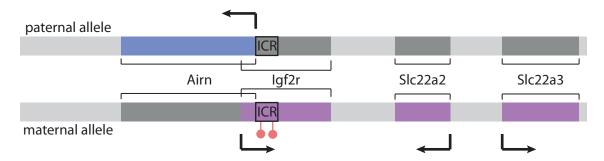


Figure 1.3: The Igf2r cluster. The ICR region is a promoter for the anti-sense noncoding gene Airn. In the paternal allele the ICR is not methylated so Airn is expressed and this expression represses (possibly due to transcriptional interference) the sense gene Igf2r and also genes Slc22a2, and Slc22a3. In the maternal allele the ICR is methylated and Airn is not expressed. The cluster also includes the Slc22a1 gene (not depicted) which is expressed from both alleles. Modified from [38].

Despite affecting a relatively small number of genes, imprinting is an essential gene expression regulatory mechanism and its importance is highlighted in studies which have shown that failure to establish correct imprinting can lead to developmental defects, neurological disorders and some types of cancer [68][17].

1.1.4 Regulation of RNA processing

Of the RNA classes described in section 1.1.1, most of the ones arising from Pol II transcription are subject to a series of processing steps [166][153] which not only influence transcript lifetime and localisation in the cell but also determine which parts of a new transcript are kept or excised from its final form. These processing steps occur in the nucleus, mostly co-transcriptionally and include:

- 1. the addition of a cap consisting of a modified guanine nucleotide to the 5' end of the transcript in a process called capping,
- 2. the selective removal of some transcript regions in a process called splicing,

3. the addition of a tail of around 200 A nucleotides to the 3' end of the transcript in a process called polyadenylation.

Capping and polyadenylation are involved in mRNA export and stability

Almost as soon as the 5' end of a transcript is synthesised a modified guanine nucleotide cap is added to it by a complex of enzymes. This cap marks the 5' end of a transcript and protects it from degradation. It is also essential for the export of the mRNA to the cytoplasm, which is regulated by a Cap binding complex.

Polyadenylation, the addition of a long tail of A nucleotides to transcripts (200 to 250 in mammalian cells [92]), has similar functions as the 5' cap of facilitating nuclear export and of protecting the transcripts from degradation. Most importantly, it provides a mechanism for regulating mRNA lifetimes since once in the cytoplasm, different mRNAs undergo progressive deadenylation at specific rates [59].

Alternative splicing and the use of alternative transcription start sites and polyadenylation sites greatly increase the complexity of the transcriptome

Splicing is the process by which some sequences known as introns are removed from the transcript and the remaining sequences known as exons are joined together. Splicing is a widespread phenomenon, especially prevalent in eukaryotes, where it is thought to affect most multi-exon genes [153][108], sometimes in a tissue specific manner, and to play a particularly important role in cellular differentiation and development [94].

Most splicing events are catalysed by the spliceosome, a complex of RNA and proteins, which recognises sequences at the boundary of exons and introns called splice sites, the branch site located upstream of the 3' splice site (3'SS) and the polypyrimidine tract located between the branch site and the 3'SS (Fig. 1.4). While the polypyrimidine tract and the branch point sequence in the introns only show some modest conservation, the vast majority of introns have two highly conserved dinucleotides at their boundaries: GT at the 5'SS and AG at the 3'SS. These are called canonical splice sites, and occur in 99% of human introns [137]. Other non-canonical splice sites exist with dinucleotides: GC-AG and AT-AC (0.9% and 0.1% of human introns), and there is also a smaller fraction of introns with other terminal

dinucleotides [137].

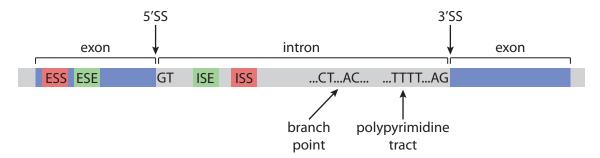


Figure 1.4: Gene sequence elements that influence splicing: intronic splicing enhancers and silencers (ISEs and ISSs) and exonic splicing enhancers and silencers (ESEs and ESSs). The canonical consensus sequences recognised by the spliceosome are shown for the 5' splice site (5'SS), branch point and 3' splice site including the polypyrimidine tract (3'SS). Modified from [94].

In addition to the splice sites that direct the spliceosome, there are also sequences that occur in exons or introns that act as enhancers or silencers (Fig. 1.4). Depending on where they occur they are designated exon or intron splicing enhancers (ESE or ISE) and exon or intron splicing silencers (ESS or ISS). As before with the regulation of transcription initiation, splicing is in part modulated by the combinatorial binding of proteins, known as splicing factors, to these enhancer and silencer regions [90]. Other known mechanisms regulating splicing include the modulation of certain components of the spliceosome [129], the secondary structure of the premRNA molecules during transcription, and a number of processes resulting from the physical interaction between the splicing machinery and Pol II during transcription, which include the gene's rate of transcription and chromatin structure [90].

The regulatory mechanisms just described make possible the alternative inclusion or exclusion of gene parts. A resulting transcript, also called isoform, will then be created by a combination of four types of events: the alternative usage of 5' splice sites, the alternative usage of 3' splice sites, the inclusion or skipping of exons (or cassette exons), and intron retention. Besides these, two other alternative isoform generating events are thought to play a significant role in the control of gene expression in cell lineages, tissue types, developmental stages and disease [26][19][19]: the usage of alternative TSSs, and the usage of alternative polyadenylation sites (Fig.

1.5).

The model for a "sharp" promoter with a single TSS of Fig.1.1 was long thought to apply to most if not all genes. However, recent technological advances allowed a more thorough genome-wide investigation of the exact location of transcription initiation via the sequencing of short tags originating from the 5' end of RNA transcripts (Cap Analysis Gene Expression or CAGE). CAGE analysis revealed that most human and mouse genes have more than one TSS which can occur within the same promoter and/or between alternative promoters for the same gene. Furthermore, more than half of human genes were found to have alternative promoters [69][26], and within the same promoter TSSs were found to be broadly or narrowly spread giving rise to the division of promoters into two types: 1) broad promoters which contain several TSSs over a large region (~ 100 bp), are CpG rich and usually correspond to ubiquitously expressed genes and 2) sharp promoters which have only one or a few consecutive TSSs and are more prevalent in genes with tissue-specific expression and in genes which have a TATAAA (or a variant of this) regulatory sequence upstream of the TSS (a TATA box) [19]. The usage of alternative promoters, which is regulated by the same mechanism as the one controlling transcription initiation at a single promoter already described, has been shown to play a significant role in the control of gene expression in cell lineages, tissue types and developmental stages [26][19]. The established view on alternative promoters is that they allow the fine-tuning of the expression of different isoforms (which may or may not perform equivalent functions) in a tissue- and developmental stage-specific way for example by the use of a different set of TFs [73]. To a smaller extent, alternative TSS usage in the same promoter, has also been shown to be under some constraint between species, hinting at a functional role [130]. While the regulatory mechanism for this has not yet been generally demonstrated, some tissue-specific TSS use is regulated by DNA methylation and/or chromatin remodelling and this is in agreement with the observation that broad promoters usually comprise CpG rich regions [66].

Further isoform diversity arises from the usage of alternative polyadenylation sites which can influence the stability and localisation of transcripts in a tissue or disease-specific manner [32]. Studies in human, for instance, found that a large proportion of genes use more than one polyadenylation site [142]. Polyadenylation occurs following cleavage of the transcript typically 15-30 nucleotides downstream from

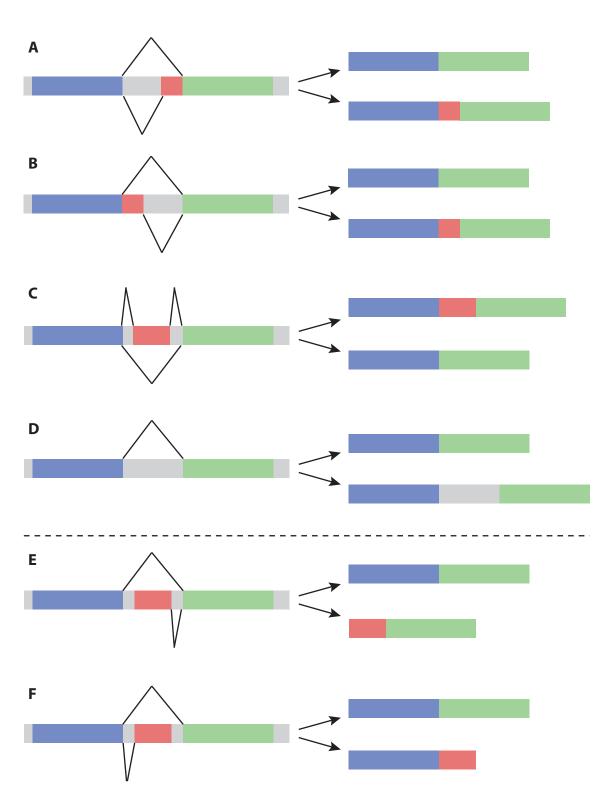


Figure 1.5: Different types of alternative isoform generating events: (A) alternative 3' splice site usage, (B) alternative 5' splice site usage, (C) cassette exon inclusion or skipping, (D) retained intron. (E) Alternative first exon. (F) Alternative last exon. Modified from [103].

a conserved sequence motif known as the polyadenylation site (frequently AAUAAA or AUUAAA followed by a T-rich motif) [106][118][169][162]. This and other sequence motifs in the gene body (upstream sequence elements or USEs), along with the modulation by external signals of the proteins involved in polyadenylation and DNA methylation near the end of the gene, have been proposed to be involved in the regulation of alternative polyadenylation site usage [53].

The regulatory mechanisms described in this section allow a single coding gene to give rise to several different transcripts, and expand the number of functional gene products the genome can code for. These are widespread mechanisms that are thought to affect most genes. For instance, appreciable levels of at least two different isoforms were found in tissues for up to 86% genes [153], and this may account for the 100,000 proteins thought to be synthesised in humans despite the number of predicted coding genes being only about 22,000 [98][112]. Similar high levels of alternative spliced genes can be found for other eukaryotes and there seems to be a general trend of increasing proportion of genes undergoing alternative splicing the more tissue and cell types an organism has [94].

1.1.5 Regulation of RNA degradation

Degradation pathways

The amount of functional products in a cell depends not only on the rate at which transcripts are synthesised but also on the rate at which they decay. At the end of their lives eukaryotic RNAs are met with multiple, often redundant, RNA degradation systems. These systems target for destruction RNAs and RNA-protein complexes that are either defective or no longer required. They work together to prevent the accumulation of excised intronic fragments, to control mRNA and ncRNA turnover and as a quality control for all species of RNA. Functional RNA turnover has a big impact on how fast RNAs respond to environmental and developmental cues and contributes to the overall pattern of expression [127].

While there exist many differing decay pathways, there are two general mechanisms by which RNAs are destroyed by RNA-degrading enzymes called exonucleases: degradation from 5' to 3' end and degradation from 3' to 5' end. For eukaryotic mRNAs, 3' to 5' degradation usually starts with the gradual shortening of their

polyA tails to a critical length after which they are digested from the 3' end [132]. The polyA tails of different mRNAs are degraded at different rates suggesting that the mRNAs contain some information that defines these rates [59]. One of the best described mechanisms thought to regulate the stability of about 7% [52] of protein coding genes, is the presence of so called AU-rich elements (AREs) in their 3' UTR region. These elements consist of sequences 50 to 150 bases long rich in adenine and uridine bases often containing repeats of AUUUA and UUAUUUAUU sequences [12]. AREs are bound by numerous proteins which can influence RNA stability in response to extracellular cues [59]. Alternatively to 5' to 3' degradation, decay can be initiated by decapping (the removal of the cap structure) followed by 5' digestion [36]. Most RNAs are degraded by both these mechanisms while some RNAs are also degraded by RNA-degrading enzymes called endonucleases that cut (cleave) RNA internally triggering a quick degradation at both ends of the transcript [59].

Degradation by RNA interference

Three classes of small regulatory RNAs (20 to 30 nucleotides), micro RNAs (miRNAs), small interfering RNAs (siRNAs) and piwi-associated RNAs (piRNAs) have recently emerged as important regulators of mRNAs and other RNAs in the cytoplasm via degradation mechanisms in animals [41]. The three species of small RNAs differ in their biogenesis, in the biological pathways in which they act and in the mode by which they regulate their targets. However, in their functional form they are all included in protein RNA complexes containing a member of the Argonaute family of proteins. These complexes target RNAs which are fully or partially complementary to the miRNA, siRNA or piRNA. The translation of their target RNAs is then repressed or the targets are themselves degraded [148]. It is not clear how translation is repressed and several mechanisms have been proposed which inhibit translation initiation or elongation, co-translational protein degradation or premature termination of translation [62]. Repression of translation is not thought to affect mRNA levels and is therefore beyond the scope of this text which will focus instead on the mechanism of silencing by degradation.

In the case of miRNAs, when they are fully complementary to their target, which is often the case in plants, this leads to endonuclease cleavage of the transcript by the Argonaute protein followed by its degradation [59]. However, most miRNAs in

animals have only limited pairing of a "seed" region of 6 to 7 nucleotides near the 5' end of the miRNA to their target. In this case, at least for mRNA transcripts, the miRNA direct their target to the 5' to 3' mRNA decay pathway. Alternatively, degradation can be initiated by decapping and subsequent 5' degradation [36]. This scenario has however, so far been more difficult to demonstrate [62]. From computational predictions and genome-wide screens of miRNA targets it is estimated that a large proportion of mammalian transcriptomes (up to 50% of human protein coding genes) are subject to regulation by up to 500 genome encoded miRNAs [62], although it is unclear what the proportions of regulation via degradation or translational silencing are. siRNAs, on the other hand, can originate from exogenous or endogenous sources and must always be fully complementary to their target in order to trigger cleavage [168].

piRNAs comprise the most recently discovered and less known class of small regulatory RNAs. piRNAs are thought to be present and function mainly in the germline during development [41]. Their main function appears to be the repression via chromatin modification of a class of genomic sequences (known as transposable elements) that are able to excise themselves from their current position and insert themselves at a new position in the genome with potential disruptive effects. Besides the silencing of transposable elements, some piRNAs have been described to target protein coding genes and to induce their degradation. However, the extent of this type of regulation is unknown and may be relatively small given that only a few examples have so far been observed in vivo [138].

Recently, it has been found that some small RNA species and proteins involved in the RNA interference pathway target regions with homologous sequence and recruit chromatin modifying factors resulting in the formation of heterochromatin and the silencing of the underlying genes [29].

1.1.6 RNA editing

Most of the RNA sequences in a cell are faithfully complementary to the DNA from which they were transcribed thanks to proof-reading and error repair mechanisms in the cell [141]. There are, however, known cases in which RNA sequences are edited postranscriptionally by the addition, insertion and substitution of nucleotides. Of

these types of edits the most prevalent in animals is the deamination of adenine into inosine (A-to-I, where I acts as a G in the translation from RNA to protein and when forming secondary structures) and the deamination of cytosine into uracil (C-to-U) [37][104].

Until recently, the number of edited bases was thought to be in the order of several hundreds. However, recent studies found extensive RNA editing in humans [111][8] and mice [25]. A particular study using a human cell line [111], found thousands of differences between RNA and DNA sequence. Up to 93% of these changes were A-to-I, while the remainder comprised other types of nucleotide changes. These non A-to-I changes were, however, validated at lower rates, suggesting that a large fraction of these are false positives. Among the edits, most were found to occur in intergenic regions, and of the ones occurring in gene regions most were located in intronic regions and 3' untranslated regions (UTR), with only a small fraction falling into coding regions.

The effect of these edits can result in amino acid substitutions, altered splice patterns, altered stability and localisation, and altered biogenesis and function of regulatory RNAs, thus having the potential to directly or indirectly affect the expression and function of many genes [37][46].

1.2 Sequence divergence to phenotypic divergence

1.2.1 DNA sequence divergence

Phenotypic diversity between populations arises due to environmental and genetic differences

In eukaryotes large phenotypic differences (these can include gene expression levels as an observable trait) between individuals of the same species are driven by differences in the environment they are exposed to, including factors such as diet [96], circadian rhythm [48], infection state [117] or the presence of drugs in the organism [20], and by differences in genetic sequence. Phenotypic diversity between organisms is therefore partially explained by DNA sequence variation [126]. This sequence variation can range from differences in single bases (known as a single nucleotide polymorphisms or SNPs), the insertion or deletion of a small number of nucleotides (known together as indels), to large scale structural variants. The latter involve the insertion, deletion or duplication of DNA segments of > 1 kilobase, which can cause differences in copy numbers between genomes (copy-number variants or CNVs), and also the inversion and translocation of segments.

Environment and genetics interact and are an important confounding factor for one another. In order to study the role of one it is thus important to control for the other. For example, one way in which the impact of the environment to the variation in organisms can be assessed is by the study of identical twins or inbred laboratory strains which possess the same genetic information but are exposed to different environments. On the other hand, if the role of genetics is under study it is necessary either to gather as much information as possible about the environmental factors to control for their effects, or to control the environment itself. The latter is frequently achieved by using laboratory organisms for which environmental factors such as diet can be controlled.

Genetic variability in a population is the result of natural selection acting on mutations and drift

Genetic variability within a population arises through the effect of natural selection on heritable mutations that occur naturally, for example due to errors introduced during DNA replication, or that arise due to external factors such as exposure to radiation or specific chemicals. When a sequence change arises, depending on its genetic context and environment, its effect can be neutral, deleterious (negative) or advantageous to the organism's reproductive success (fitness). When a variant confers a higher fitness its frequency will tend to increase and it will eventually become the only variant present in the whole population (it becomes fixed). On the other hand, a variant that is deleterious will tend to disappear from the population. Variants can also have very small effects that confer almost no change in fitness to an organism. However, natural selection is a stochastic process and thus even deleterious variants may be come fixed due to random drift. Sequence divergence between species thus arises from the fixation of both positively selected variants and neutrally evolving variants. How much of the variation between organisms can be explained by one kind or the other is unknown, but current evidence suggests that these proportions can be different between taxa [80]. Importantly, as highlighted above, variants do not exist in isolation and their effects can be influenced by their genetic context [113]. For example, variants that are initially deleterious can become fixated when followed by compensatory variants that counteract the negative effect on fitness [105].

1.2.2 Gene regulatory divergence

Sequence variants do not accumulate homogeneously along the genome

In principle genetic changes could arise homogeneously over the genome, however they do not accumulate homogeneously. One way of observing this is by comparing the genomes of different species and searching for similar (conserved) sequences. Highly conserved sequences that have accumulated fewer variants than would be expected for a particular mutation rate are said to be under constraint (or purifying selection) and are generally considered to be functional. The higher their conservation the more critical their function is likely to be in the cell. Protein coding sequences are an example of such highly conserved sequences likely due to their structural and enzymatic functions in the cell. Mutations to the coding sequence may render the protein non-functional which can directly affect cell function or change the expression of several other genes if the protein is involved in their

regulation (e.g. if it is a TF).

One example of a coding change that disrupts protein function is the deltaF508 mutation in humans which comprises the deletion of three nucleotides in the CFTR protein. This protein is normally inserted in the cell membrane and regulates the movement of salt and water through it however, when mutated the protein is unable to reach the cell surface, causing cystic fibrosis [67].

In a genome-wide manner, a recent study comparing 29 mammalian genomes, predicts that up to 5.5% of the human genome is more conserved than expected [89]. Of the constrained bases found, 25.3% corresponded to mRNAs and given that $\sim 1.5\%$ of the genome codes for protein sequence, this corresponds to $\sim 93\%$ of human protein coding bases being under constraint. Furthermore, 4.4% of constrained bases overlapped known and potential promoter and enhancer regions. This indicates that whether a variant is neutral, advantageous or deleterious depends on its location and the magnitude of its effect and that in principle, the larger the effect of a sequence change (the higher its pleiotropic effects), the higher the probability of it being deleterious [139].

Functional sequence divergence is not enough to explain phenotypic divergence

Given the high degree of conservation of the sequence of many protein coding and functional RNA [11] genes observed across taxa [10], it has been proposed that it is the larger difference of gene expression levels between and within species, rather than protein sequence change that more likely explains their phenotypic differences [70]. This hypothesis is supported by numerous studies which found: 1) a correlation between expression and phenotypic divergence and 2) that it is possible to recreate phenotypic differences though the manipulation of gene expression levels [159]. In addition to this, studies investigating the divergence of morphological traits have revealed that most sequence variants causing phenotypic variation reside in cisregulatory regions [139]. These cis-regulatory regions are usually thought to include the DNA sequence of promoter/enhancer sites and of transcribed regions that alter transcription rate and/or transcript stability. However, cis-regulatory effects can also arise from epigenetic changes that alter chromatin structure [158].

Understanding how the regulatory changes that underlie expression divergence

evolve is an important goal of molecular biology. Recent technical advances which allow the sequencing of a cell's transcriptome (RNA-seq, described in the next section), have opened the possibility to study this with unprecedented detail. In chapters 3 and 4 I use RNA-sequencing data to establish a relationship between sequence divergence and expression divergence in mammals.

1.3 Measuring gene expression with RNA sequencing

Many technologies have been used over the years for the purpose of measuring gene expression. Two of these are capable of measuring thousands of genes simultaneously: the older hybridisation based microarray technology and the more recent sequencing based RNA-sequencing (RNA-seq) technology.

Microarrays contain hundreds of thousands of short single stranded DNA molecules called probes, which are attached to fixed locations on a glass or polymer slide. A sample of RNA molecules or single stranded DNA molecules complementary to the RNAs being measured (cDNAs) is created and each molecule is labelled with a fluorescent dye. The cRNA/cDNAs are then passed over the slide and sequences complementary to the probes will tend to bind to them. Expression can then be estimated by the optical measurement of the amount of fluorescence coming from each probe on the slide [3].

Although microarrays are a powerful relatively inexpensive and mature technology, they present several limitations. For example, probe sequences must be pre-specified so it is necessary to have prior knowledge of the sequences to be interrogated. Additionally, expression measurements suffer from background noise arising from non specific binding of cDNAs which are only partially complementary to the probes. As non specific binding depends on the sequence composition of a probe there are non trivial difficulties in estimating transcript or gene expression from estimates aggregated over several probes. For the same reason the comparison between different transcripts in the same microarray is unreliable and the use of microarrays is usually limited to the detection of differential expression of the same probe target between samples [93].

Sequencing of DNA molecules on the other hand, has recently been used to measure transcriptomes and has the potential to overcome these limitations. In a single RNA-seq experiment it is possible to investigate not only gene expression, but also alternative splicing [108], novel transcript expression [50], allele specific expression [27], gene fusion events [31] and genetic variation. However, while the technology is promising it is still in its early days. Experimental and methodological biases are still frequently being reported [57] and there are no standard pipelines nor

gold standards for analysis. Furthermore, due to the big volume of data generated there is a need for specialised algorithms and bigger and more powerful servers on which to conduct analysis [115]. In this section I introduce the concepts behind sequencing technology and then review current methods for analysing the data from raw nucleotide sequences to gene and transcript level expression estimates.

1.3.1 RNA sequencing experiment workflow

Several technologies, including the ones developed by Roche (454), Illumina (Genome Analyzer I/II and Hiseq) and Applied Biosystems (ABI SOLiD), are available at present for the high-throughput sequencing of DNA molecules. The different technologies require different experimental protocols. The most commonly used one, which is adopted with Illumina's machines usually comprises the following steps:

Enrichment of a subset of RNAs from a larger pool of total RNA - this step ensures that a strong signal is obtained for the RNA population of interest by its enrichment in the sample. For example, mRNAs are usually enriched by the selection of polyadenylated molecules, or the whole spectrum of RNAs is enriched by the targeted removal of ribosomal RNAs (the most abundant RNA species in the cell).

RNA fragmentation - most sequencing platforms require the molecules about to be sequenced to be of relatively short length (e.g. 200 to 500 bp). To achieve this, larger molecules have to be fragmented via RNA hydrolysis or nebulisation. Alternatively, the cDNA rather than the RNA may be fragmented after cDNA synthesis (described bellow) via DNase I treatment or sonication [156]. This step also ensures that a more uniform sampling of sequences along the transcripts is obtained [101].

Double stranded cDNA synthesis - while some sequencing technologies allow the direct sequencing of RNA molecules, most can only sequence DNA molecules. In order to convert RNA into DNA, the RNA molecules are used as templates for the synthesis of cDNA molecules (reverse transcription). Reverse transcription requires that a primer hybridises to the RNA sequence in order to start. These primers are

usually short sequences of Ts (deoxy-Thymine sequences or oligo-dTs) which are complementary to the RNA polyA tails, or sequences of 6 random bases (random hexamers), which have the potential to hybridise to random positions along the RNA molecule. Once reverse transcription is complete the RNA molecule is removed. The resulting single stranded cDNA molecule has an hairpin loop at its 3' end, serving as a primer for the second complementary DNA strand to be synthesised. When using this protocol it is impossible downstream from this step to distinguish the two cDNA molecules so the information of which strand was present in the transcript is lost. To avoid this, several techniques that distinguish between the strands have been developed [82], for example by marking one of them for degradation by a chemical modification [109].

Adapter ligation and PCR amplification - the doubled stranded cDNAs are treated to generate blunt edges and adapters are ligated to both ends of the molecules. Following adapter ligation, all molecules are PCR amplified.

Size selection - the fragmentation step creates a range of molecule sizes, to ensure that all molecules are of similar length, a desired narrow range of DNA lengths is purified by gel extraction.

Sequencing-by-synthesis - the fragments can be sequenced on one end (single-end sequencing or SE) or both ends (paired-end sequencing or PE). In the first step of sequencing the double stranded molecules are denatured into single strands and passed over a flow cell with oligo sequences complementary to the adapters immobilised on its surface. Fragments bind to these oligos and each is bridge amplified on the spot to create a cluster of identical molecules that serve as templates for the formation of complementary strands. Sequencing primers are added to each molecule and the millions of molecules in the clusters start being reverse complemented simultaneously. In each sequencing step, fluorescently labelled reversibly terminated nucleotides compete to bind with the template strands. In each step only one nucleotide is added to each growing complementary strand. Each new nucleotide is labelled with a dye (different for each nucleotide type) and a laser is used to identify where and which nucleotide was incorporated in each cluster. The fluorescent die

and terminal group are then removed from the new nucleotides and the process is repeated a desired number of times (typically 30 to 200 times).

At the end of this process the result is a sequence of images (one for each sequencing step), in which each lighted spot corresponds to a cluster and the colour of each cluster represents a different base type. While it is possible to analyse the images themselves to obtain the nucleotide sequences for each cluster using software tools called Base Callers [77], for most analyses this is done at the sequencing facility and users start from text files containing the nucleotide sequence for each cluster. These files are typically in the FASTQ file format which includes for each cluster (read): a unique id, the nucleotide sequence and a Phred quality score per base. These Phred quality scores Q are set by the Base Callers and are defined as $Q = -10log_{10}(P)$, where P is the probability of the base call being incorrect [21]. In paired end experiments reads are typically split over two ordered files, one with the first end and the other with the second.

1.3.2 Read mapping strategies

While RNA-seq studies can have a myriad of objectives, most are used for estimating expression of particular genomic regions which could be genes, isoforms, exons, splice junctions or novel transcribed regions. The first step to achieve this requires the identification of which features are present in the sequencing library. Mapping of reads to these features can be challenging given that reads are very short when compared to most genome sizes. There are three principal approaches for this mapping which include in order of decreasing complexity: de novo assembly of reads, read alignment to the genome followed by assembly and read alignment to the transcriptome.

1.3.2.1 De novo read assembly

The objective of *de novo* read assembly is to find a set of the longest possible contiguously expressed regions (contigs) by exploiting overlaps between reads. Three algorithmic strategies have been employed to solve the problem of *de novo* assembly in recent years: prefix tree based, overlap-layout-consensus based, and de Bruijn

graph based [152]. Of these the most prevalent has been the de Bruijn graph representation which has been adopted by a number of transcriptome assembly programs such as Trinity [47], Trans-ABySS [122] or Oases [134].

In the de Bruijn graph representation read sequences are split into two sets of substrings, one set of substrings of length k (known as k-mers), and one set of substrings of length k-1. A graph is then built with the k-1-mers as nodes and the k-mers as directed edges if their prefix and suffix match the sequences in the start and end nodes respectively. The choice of k is essential for a good assembly. A smaller k produces longer contigs but more complex graphs, whilst a larger kproduces shorter contigs and simpler graphs. However, the optimal k depends of the level of expression of the gene. Highly expressed genes produce more reads per base and consequently there is more overlap between the reads. The optimal k in this case is larger. On the other hand, lowly expressed genes produce less reads which overlap less. In this case, the ideal k is smaller. A single k is therefore unlikely to be optimal for the whole range of expression values found, unlike for genomic DNA sequence assembly. Some assembly programs address this by using a range of k values to produce sets of contigs which are then merged. Further challenges to de novo assembly are the occurrence of sequencing errors, heterozygosity and alternative splicing which can create a large number of forks in the graphs. A number of strategies can be employed to address some of these problems including the removal of variants with low coverage from the graphs and contig merging and expansion by using paired-end reads [122]. In the case of alternative splicing, it is important to note that for well annotated species, novel, previously unknown isoforms are expected to be lowly expressed given that highly expressed isoforms are more likely to have been detected and annotated by previous technologies in many years of genome annotation effort. If novel isoforms are lowly expressed it will still be challenging for de novo assemblers to find a good gene model.

In summary, de novo read assembly is the most challenging of the three mapping strategies discussed in this section, however it is particularly useful when a reference genome is not available, or when the annotation is of poor quality for the species in question. Also, it provides the advantage of allowing a more unbiased discovery of exon-exon junctions [122].

1.3.2.2 Read alignment

The alternative to de novo read assembly is the alignment of reads to a reference which can either be a genome or a transcriptome (the set of all known transcript RNA sequences for a species). While genome assembly has the advantage of allowing the discovery of novel genes and isoforms, it requires the ability to align reads across splice junctions, which is not trivial (Figure 1.6). To date there are several alignment programs capable of generating spliced alignments, including TopHat [145], GSNAP [164], QPALMA [15] and SOAPSplice [60], and an order of magnitude more aligners that are specialised in the alignment of short reads contiguously to a reference including Bowtie [76], BWA [84] and SOAP [87].

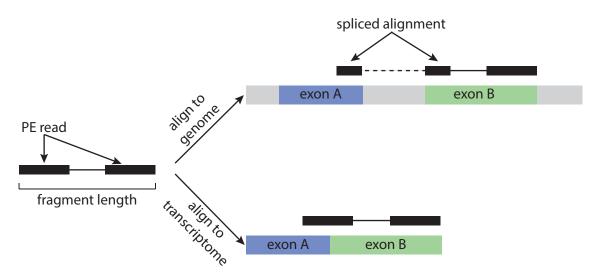


Figure 1.6: A paired-end read is aligned to the genome (top) and to the transcriptome (bottom). Alignment to the genome sometimes requires reads to be mapped across introns (dashed line), which is hard and usually only happens across canonical splice sites and with a minimum number of mapped bases on each side. Contiguous alignment to the transcriptome is easier.

Alignment to the genome

The most well known spliced aligner, TopHat, relies on an approach by which reads are initially aligned contiguously to the genome with Bowtie and the non aligning reads are set apart. When reads are longer than 75bp they are split into smaller

segments and aligned independently. The reads that align form a set of covered regions or "islands" of expression. Each island is extended by a small number of bases to account for decreasing coverage at its ends and to include the first few bases of the introns. TopHat then lists canonical splice sites within these islands by searching for GT, GC, AG, AT and AC sequences that mark potential splice sites (this only applies when reads are \geq 75bp, otherwise only GT-AG pairings are used). It then considers as potential splice junctions all canonical pairings (GT-AG, GC-AG and AT-AC) between islands within a minimum and maximum intron size set by the user. Splice-junctions are then searched against the reads that did not align contiguously to the genome. Reads are considered as candidate maps to splice junctions when at least 2k bases in their good quality section (a region starting from the 5' end of the read with a user defined length) overlaps a splice junction by at least k bases of each side. This 2k long region is called the "seed" and mismatches are not allowed in it. Any read with a matching seed is then checked for a complete alignment to the exons of either side of the junction. Finally, if a read or read pair has more than one possible alignment, the best alignment is chosen according to the following criteria: if the experiment was paired end choose the alignment in which both read ends matched, choose the alignment that contains the least number of splice junctions, if the experiment is paired end choose the alignment compatible with the experimental insert size, if two alignments span two different introns choose the one the spans the shortest, and finally choose the alignment with the least number of mismatches. When more than one alignment meets the criteria above all alignments are reported.

Unavoidably, in a trade-off between sensitivity, specificity and speed, TopHat uses a large number of heuristic parameters. These include for instance: the number of bases by which to extend the islands (set to 45 bp by default but which depends on the read length), the minimum distance between islands for them to be considered independent exons (setting this to a larger number will improve speed but may result in the "loss" of short introns), the minimum and maximum intronic length to consider (again, the narrower the range the greater the speed at the cost of sensitivity), the length of the seed and high quality regions of the read, and several others. The result of the combination of all these parameters is complex and species dependent and therefore would be difficult to assess even with simulated data. To

my knowledge this has not been done and it is unclear what the impact of changing the parameters is. What limited comparisons exist have been reported by competing alignment tools in scenarios of limited scope, for example in [60] and [164].

Alignment to the genome results in a set of one or more genomic coordinates for each aligned read which may or may not span exon junctions. By itself this information is of limited use so alignments can be further matched to known annotated features (for example by searching for overlaps between aligned reads and genes) or they can be used to build gene models de novo. One of the earliest and most well known programs to achieve the latter is a software application called Cufflinks [146]. In this program the authors have implemented an algorithm which tries to find the smallest possible set of transcripts that explains all observed (aligned) read or read pairs (henceforth in this section referred to as fragments). As in the de novo assembly approach described above, the fragments are used to find islands of expression. The problem of assembly is then to construct a directed acyclic graph in which fragments are nodes and pairs of nodes are connected if the fragments overlap with one another and if they do not imply splice junctions which cannot be present simultaneously in the same transcript (i.e. if the aligned reads are not incompatible, Figure 1.7). Assembly with Cufflinks is done independently for each island.

Finally, Cufflinks finds the minimum number of partitions into chains of the graph by implementing a proof of a theorem for the decomposition of partially ordered sets known as Dilworth's theorem. This set of minimum number of paths however may not be unique as in the example in Figure 1.8. In order to "phase" distant exons together Cufflinks chooses the path that minimises the total cost obtained by weighting each graph edge between nodes x and y with a cost $C(x,y) = -\log(1-|\phi_x-\phi_y|)$, where ϕ_x and ϕ_y are the percent-spliced-in metrics computed for x and y by dividing the number of alignments compatible with x or y by the total number of fragments overlapping x or y and normalising for the length of x or y.

The method employed by Cufflinks requires high coverage (high read overlap) to create good gene models, otherwise lowly expressed transcripts will be broken into pieces. Still, at low coverage this method is more sensitive than the *de novo* assemblers of the previous sections [134]. One other caveat of this approach is that paths are maximally extended as in the example of Figure 1.7, making it impossi-

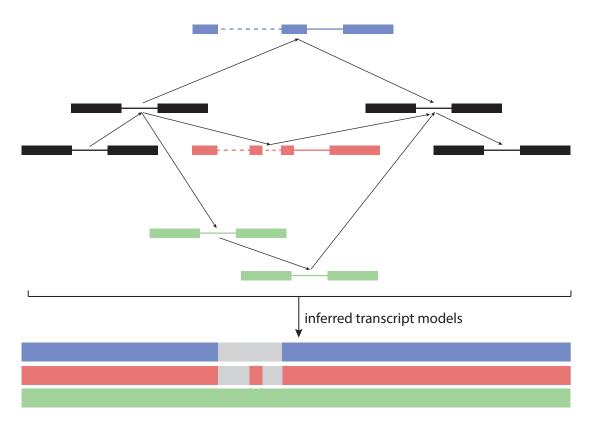


Figure 1.7: The overlap of a set of aligned PE reads is shown. The blue, red and green sets are mutually incompatible because they do not imply the same introns (dashed lines). For example, the green reads come from the intronic regions implied both by the red and the blue reads. The black reads are compatible with the three coloured sets. These reads imply that there are at least three isoforms (shown bellow). It is important to notice that because all paths are extended to the maximum, it might not be possible to detect alternative start and end sites with this method (for example when there are several polyadenylation sites within the same 3' terminal exon). Modified from [146].

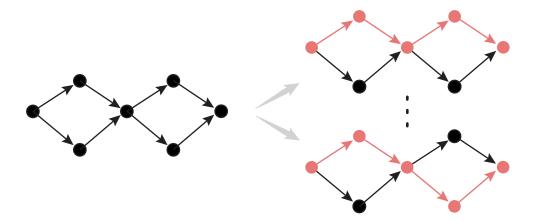


Figure 1.8: In this example the graph forks, joins and forks again. With no additional information it is impossible to known which of the 4 possible paths are present in the data.

ble to detect some instances of alternative transcript start and end sites. Finally, Cufflinks finds the minimum set of transcripts that explains the data. Choosing the simplest model over a more complex one when both models are equally valid is an application of Occam's Razor. However, while Occam's Razor is of great use for the development of theoretical models, its adoption for arbitrating between models in biology is controversial since the result of evolution is not necessarily optimal [157].

Alignment to the transcriptome

One alternative to gapped alignment to the genome is contiguous alignment to the transcriptome (Figure 1.6). The main advantage of this approach is the relative simplicity of aligning reads contiguously to the reference. In this case, the only and potentially quite large assumption is that the annotated gene models are reasonably accurate. The lack of confidence in known annotations, and the fact that alignment to the transcriptome excludes the discovery of novel expressed regions, may in some instances pose a large drawback for the use of this approach. However, this problem could be mitigated by complementing the transcriptome reference with a set of novel gene models determined with one of the methods above.

For contiguous alignment to a reference, the most well known aligner is Bowtie. Bowtie indexes and compresses a genome sequence using a technique called a BurrowsWheeler (BW) transform. The BW transformation allows the index to be held in memory and is faster than other aligning approaches such as spaced seed indexing [144]. The output of Bowtie, as with most current aligners including all previously mentioned, is in the SAM format. Among other information the SAM format provides for each read one or more alignment records describing one or more locations, in this case a coordinate along a feature, to which the read aligns [85].

1.3.3 Expression quantification

Regardless of the method used for the mapping of reads to features, the next step in the analysis workflow is to estimate expression by counting how many reads map to each of the features. When quantifying expression special care must be taken to not double count so called multi-mapping reads. This term refers to reads that 1) can be aligned equally well to several locations in a reference sequence (e.g. a genome), either because they are of low complexity (for example if they contain sequences that map to repetitive regions) or because they map to paralog genes; and/or 2) overlap several transcripts from the same or different genes (Figure 1.9). While it is possible to discard multi-mapping reads this can lead to a significant loss of information and systematic underestimation of expression estimates, especially when reads are shorter [147]. Alternatively, multi-mapping reads could be distributed according to the neighbouring coverage at each site [101]. However, neither of the two approaches addresses the problem of estimating transcript level expression which is one of the most interesting applications of RNA-seq.

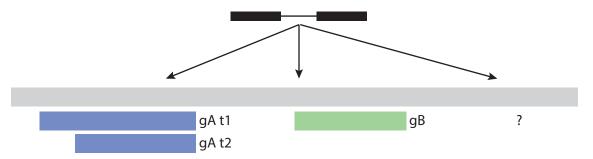


Figure 1.9: Example of a multi-mapping read aligning to three transcripts from two different genes and to a region of the genome with no annotation.

The problem of estimating transcript level expression was addressed in a number of methods reviewed in [107] and [44]. A reoccurring theme in these methods is the use of variations of the Poisson model first proposed by Marioni et al. [93] for gene level expression. In their study, the authors found that the Poisson distribution, which captures the unavoidable statistical variation that comes from counting independent events, was appropriate to model the variation across technical replicates. In this model the number of reads r from gene g is modelled with a Poisson distribution:

$$r_g \sim Poisson(Nl_g\mu_g)$$
 (1.1)

where μ_g is the concentration of RNA molecules arising from gene g, l_g is the effective length of the gene (the number of possible start positions for reads in the gene) and N is a normalisation constant that allows the comparison of read counts across experiments (normalisation issues are discussed in the next section).

This model can be refined to be used as an isoform level model, however isoform read counts are not observed. What can be observed is the number k_i of reads that align to a transcript set i (Figure 1.10), which can also be said to follow a Poisson distribution:

$$k_i \sim Poisson(Ns_i \sum_t M_{it} \mu_t)$$
 (1.2)

where s_i is the effective length of the sequence shared by transcripts in set i and M is an indicator matrix such that $M_{it} = 1$ if transcript t is in set i and consequently, $\sum_t M_{it} \mu_t$ is the is the total expression of transcript set i. Furthermore we can see from Figure 1.10 that X_{it} , the unobserved number of reads in region i of transcript t, can be modelled by:

$$X_{it} \sim Poisson(Ns_i M_{it} \mu_t) \tag{1.3}$$

which can be fit using an expectation maximisation (EM) algorithm. This model has been implemented in the MMSEQ method [147], while variations on it have been implemented in POEM [120], the method of Jiang and Wong (J&W) [63], MISO [65] and RSEM [83]. All of these with the exception of MMSEQ however, do not

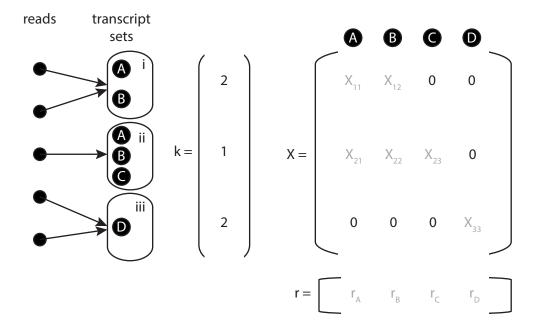


Figure 1.10: Five reads align to transcripts A, B, C and D not necessarily from the same gene. Reads can align to several transcripts, for example the first read aligns to transcript A and to transcript B and the third read aligns to transcripts A, B and C. Transcript sets (i, ii and iii) are built so that each reads maps to one and only one of these. The number of reads per transcript r, which correspond to the sum of the columns in X, is unobserved, while the set of observed counts per transcript set is in k. The indicator matrix M is not shown but can be inferred from X. Modified from [147].

make use of all the available information. For example, POEM, J&W and MISO do not use reads that map to multiple genes therefore estimating the expression of transcripts at different loci independently of one another [147] and J&W and RSEM do not support paired-end data. The Cufflinks method described in the previous section also obtains expression levels for their de novo assembled transcripts with a generalisation for paired end reads of the J&W method. However, they also rely on the simplification of estimating transcript abundances at different loci independently and instead they use a linear model which allows them to find the unique maximum of the likelihood function via numerical optimisation. Finally, most of the models above only give point estimates for transcript abundance. The exception to this is MISO and MMSEQ which give a measure of the uncertainty in the estimates. MMSEQ, for instance, samples from the posterior distributions of the μ_t to calculate sample means and respective Monte Carlo standard errors (MCSE). Of the above models, MMSEQ is the only one that uses the full data (including the fragment length information and reads that align to multiple genes/locations) to estimate the expression (and corresponding uncertainty) of multiple transcripts.

1.3.4 Expression normalisation

Once expression estimates are obtained it is necessary to ensure, via normalisation, that levels are comparable across libraries (different samples) and across features in order to make valid inferences about the differential expression (DE) between features within a sample or the same feature between samples belonging to different biological conditions. Given the count nature of RNA-seq data it is important to take into consideration that read counts arising from a transcript are proportional to: 1) the length of the transcript, and 2) the depth of sampling. This was already implicit in equation 1.1 via the gene length and library scaling parameters l_g and N. In the absence of any biases, the expression of gene g normalised across genes and libraries is given by:

$$\hat{\mu}_g = \frac{r_g}{Nl_g} \tag{1.4}$$

Further dividing $\hat{\mu}_g$ by 10^{-9} gives the Reads Per Kilobase per Million mapped reads (RPKM) [101] measure that has been extensively used as a normalised measurement

in many RNA-seq studies [16][50][58]. While RPKM works well for technical and some biological replicates, several recent studies have shown that due to a number of experimental biases, there is a need for refined models for normalisation.

Normalising across libraries

In their paper, Robinson and Oshlack argue that the RPKM model of standardising the data between samples by scaling the number of reads in a library to a common value across all sequenced libraries in an experiment may not be appropriate for normalisation between libraries of different biological conditions [123]. The crux of the argument is that the total number of reads that can be sequenced in a sequencing lane is limited and that counts from very highly expressed genes leave less real estate available for counts from lowly expressed genes. This can be illustrated with an example: suppose that in two RNA populations A and B most genes are similarly expressed but that population A also includes a group of highly expressed genes which are not present in B. The highly expressed genes in A will use up some of the sequencing real estate. The genes in A that are common between A and B will thus be less sequenced in A and appear to have different expression levels from B. Importantly, scaling the libraries to a common value as with RPKM will not solve the problem, given that this assumes that the total RNA output (which is unknown) is the same for all libraries.

A better assumption, which has been widely used with microarrays, is that the RNA output of a core set of genes G is similar between samples. A number of methods, including the ones implemented in the DESeq [5], edgeR [125] and baySeq [55] Bioconductor packages, use this assumption and find a scaling factor for one sample relative to the other accordingly. The way in which these methods find this scaling factor can however, be quite different.

In the TMM method implemented in edgeR, the assumption is that for the core set of genes G, the total RNA output of sample i and j is the same:

$$\sum_{g \in G} \mu_{ig} l_g = \sum_{g \in G} \mu_{jg} l_g \tag{1.5}$$

and a scaling factor is determined when this is not the case. This scaling factor is calculated on set G which includes genes with unexceptional values of log fold

change of normalised counts $M_g^{(i,j)}$:

$$M_g^{(i,j)} = \log \frac{r_{ig}}{N_i} - \log \frac{r_{jg}}{N_j} \tag{1.6}$$

and unexceptional values of mean of the log normalised counts $A_g^{(i,j)}$:

$$A_g^{(i,j)} = \frac{1}{2} \left(\log \frac{r_{ig}}{N_i} + \log \frac{r_{jg}}{N_j} \right) \tag{1.7}$$

which are the genes that remain after trimming the $M_g^{(i,j)}$ values by 30% and the $A_g^{(i,j)}$ values by 5%. A scaling factor $S^{(i,j)}$, is then the exponential of a summary (a weighted mean) of $\{M^{(i,j)}\}$ for genes in G that can be used to adjust the estimated expression $\hat{\mu}_{jg}$ for all genes g by substituting N_i and N_j with:

$$\tilde{N}_i = \frac{1}{\sqrt{S^{(i,j)}}}, \tilde{N}_j = \sqrt{S^{(i,j)}} \tag{1.8}$$

An alternative normalisation method is provided in the DESeq package which, for each gene g in sample i, calculates the ratio of its read counts to the geometric mean of the m genes of sample i. The median of these, also a robust summary of the data, is then used as the size factor for sample i:

$$S^{(i)} = median_i \left(\frac{r_{ig}}{\left(\prod_{v=1}^m r_{iv} \right)^{1/m}} \right)$$

$$\tag{1.9}$$

Normalising across genes

Recalling the normalisation equation 1.4, l_g is the normalising factor for gene length which comes from the underlying assumption that there is a constant Poisson rate of reads along all positions p in a gene and that the sum of random Poisson variables

is also Poisson distributed:

$$r_{igp} \sim Poisson(\tilde{N}_{i}\mu_{g}), r_{ig} = \sum_{p=1}^{l_{g}} r_{igp}$$

$$r_{ig} \sim Poisson(\tilde{N}_{i} \sum_{p=1}^{l_{g}} \mu_{ig}) \sim Poisson(\tilde{N}_{i} l_{g} \mu_{ig})$$

$$(1.10)$$

If this were the case, setting l_g to the gene length minus the fragment length plus one would be appropriate. However, recent studies have found that two types of biases affecting which fragments are sequenced are introduced during library preparation and processing: positional biases, and sequence-dependent biases [121].

Positional biases include biases in the coverage that depend on the region of the transcript. For example, Mortazavi et al. [101], found that a fragmentation step allowed a more uniform coverage along the transcripts. However, RNA and cDNA fragmentation result in different biases: RNA fragmentation created a coverage that is relatively uniform along the transcript body but depleted at the ends, while cDNA fragmentation creates a coverage that is biased towards the 3' end of the transcript [156]. Another type of positional bias arises from the alignment of reads to a genomic reference - the coverage surrounding splice junctions tends to drop in comparison with the adjacent exonic regions because it is harder to align reads to those regions [14].

Sequence-dependent biases on the other hand, refer to biases in the coverage that depend on the local sequence. Hansen et al. [54], for example found a very reproducible pattern of nucleotide frequencies for the first few bases of mapped reads across experiments in different organisms and across laboratories. The authors concluded that this was caused by random hexamer priming in the cDNA generation step of library preparation which creates a preference for nucleotide composition at the beginning of reads and that this makes the location of reads along transcripts non-uniform.

These observations suggest that a variable-rate Poisson model is more appropri-

ate than a constant one:

$$r_{ig} \sim Poisson(\tilde{N}_i \sum_{p=1}^{l_g} \alpha_{gp} \mu_{ig}) \sim Poisson(\tilde{N}_i \tilde{l}_g \mu_{ig})$$
 (1.11)

where α_{gp} is a weight at position p of gene g, and \tilde{l}_g is an adjusted effective length. The examples above highlight that individual steps in the library preparation are the source of some of the observed biases. However, there is uncertainty on how to model the biochemical process of each of the steps and on how they interact. While finding the individual effects of each step is therefore impractical, factors that explain some of the observed variability can be determined from the data.

Both Hansen et al. [54] and Li et al. [86], propose methods correcting for sequence-dependent biases by inferring an adjusted effective length from the data. The earlier Hansen et al. method only uses the 7 downstream bases from the start position therefore detrimentally ignoring the upstream sequence composition. The Li et al. method (included in MMSEQ) consists of calculating the sequencing preference at each possible start position in a transcript determined by the 40 bases upstream and the 40 bases downstream from the transcript start site for each gene g. For this, a linear model for the logarithm of the weights is fitted using the surrounding sequence of each position as a covariate and using only the most highly expressed genes:

$$\log \alpha_{gp} = \tau + \sum_{q=p-40}^{p+40} \sum_{h \in \{A,C,G\}} \beta_{qh} I(b_{gq} = h)$$
(1.12)

where τ represents the baseline effect of having a surrounding sequence composed solely of T bases, β_{qh} represents the effect of having a base h at position q (e.g. the effect of a T being replaced by a C), and $I(b_{gq} = h)$ is an indicator function that is equal to one when the base b at position q is equal to h and zero otherwise [147][86]. This method was shown to cause slight changes to the adjusted expression estimates [147] and to modestly improve the estimates when compared to expression levels assayed by qRT-PCR [121]. This small effect may have several explanations. First, variations in the Poisson rate will tend to average out over the length of a transcript. Second, this method does not model positional biases and furthermore

is based on bias parameters determined for the most highly expressed genes prior to bias correction which may not be representative in their sequence content [121].

These issues were addressed by Roberts et al. [121] (implemented in Cufflinks). In their method, expression and bias parameters are jointly estimated using the original Cufflinks likelihood framework described in [146]. The authors found, however, that taking positional biases in addition to sequence-dependent biases into account makes only a modest improvement to the correlation between estimated expression and expression measured with qRT-PCR for most stranded library preparation protocols, having a large impact only for a few estimates.

1.3.5 Differential expression

The Poisson model for read counts has been previously used to test for Differential Expression (DE) between conditions and was found to provide a good fit for counts arising from technical replicates [93]. However, this model predicts smaller variations than are seen between biological replicates [125][5]. The data thus show an over-dispersion that cannot be captured by the equal mean and variance of a Poisson distribution. Robinson et al. [125] propose the use of a Negative Binomial (NB) distribution to model counts across samples and capture the extra-Poisson variability, known as over-dispersion. The NB can also be seen as equivalent to considering the mean of a Poisson as a random variable that follows a Gamma distribution:

$$r_q \sim Poisson(\mu_q), \mu_q \sim Gamma(\alpha, \beta)$$
 (1.13)

$$r_g \sim NB(\mu_g, \sigma_g^2) \tag{1.14}$$

where $\mu_g = \alpha \beta$ and $\sigma^2 = 1/\alpha$. The NB binomial has two parameters, however the number of replicates in an typical experiment is too small for both of them to be estimated reliably. In their implementation in the edgeR Biocondutor package, Robinson et al., estimate a single parameter and by definition assume a relationship between the mean and variance of the negative binomial:

$$\sigma_a^s = \mu_g + \alpha_g \mu_g^2 \tag{1.15}$$

where α_g is estimated from the data and constant for all samples in the experiment. Anders and Huber [5], on the other hand, allow a more flexible relationship between the mean and the variance and solve the problem of having imprecise dispersion estimates, due to low numbers of replicates, by sharing information across transcripts. This is achieved by estimating the variance-mean dependence within each sample with local regression to find new estimates for the dispersion. These can be then used instead of the raw estimates in a Negative Binomial exact test [124].

The null hypothesis for DE between two conditions typically states that for each feature (gene, transcript, or other feature) the means μ for the two conditions A and B are equal: $Ho: \mu_A = \mu_B$. With Anders and Huber's DESeq method (and similarly in edgeR), for each feature the test statistic used is:

$$q_c = \sum_{j=1}^{n_c} r_{cj} \tag{1.16}$$

where $c \in A, B$, and n_c is the number of replicates in condition c. Under the null, it is possible to calculate the probability $p^* = p(q_A = q_A^*, q_B = q_B^*)$ of observing $q_A = q_A^*$ and $q_B = q_B^*$. A p-value for observing the data or anything more extreme can be obtained by summing over all null probabilities less than or equal to p^* given that the overall sum $k^* = q_A^* + q_B^*$:

$$p = \frac{\sum_{a+b=k^* \land p(q_A=a, q_B=b) \le p^*} p(q_A=a, q_B=b)}{\sum_{a+b=k^*} p(q_A=a, q_B=b)}$$
(1.17)

An alternative approach to DE also using a NB model is implemented in the baySeq Bioconductor package [55], which uses an empirical Bayes approach to obtain the posterior probabilities of DE rather than obtaining p-values via hypothesis testing. All three methods, edgeR, DESeq and baySeq were compared using simulated data in [74] and in [44]. Overall these studies concluded that all three methods perform similarly, with baySeq performing marginally better in ranking genes according to their significance.

An important observation to be made regarding the methods above is that they assume that the input data is read counts. In fact, DESeq recommends the use of

the HTSeq Python framework [4] for obtaining a table with counts per feature by simply overlapping reads with annotated features and discarding multi-alignment reads. This approach should work reasonable well at the exon level, however, while it is possible and valid to also use this approach for obtaining isoform and gene levels (since this discussion is relative to comparing levels between conditions), this will result in a loss of power (given the large numbers of reads that will be removed from the analysis). A better solution would be to use one of the probabilistic methods already described to obtain isoform and gene level estimates. The justification for the latter is in a study that found that summing reads over isoforms provides estimates that are more accurate than summing over exons [44]. Regarding the assessment of DE on estimated isoform and gene levels, it is possible to use the DE methods for count data described above. However, these DE methods do not take into account the uncertainty in the estimates which are sometimes provided. There is therefore scope for the development of novel methods that exploit this information.

Chapter 2

An RNA-seq analysis pipeline

In this chapter I present an R based pipeline I developed for the processing of RNA-seq datasets. This pipeline provided the basis for the results described in the subsequent chapters and for work I have co-authored and which is not described here¹²³⁴. All the pipeline design and implementation work was entirely my own with the exception of 1) the adaptation of the pipeline for its use in the R-cloud and 2) the preparation of the R package, which were done in collaboration with Andrew Tikhonov and Misha Kapushesky from the EMBL European Bioinformatics Institute. This work was published in early 2011 in Bioinformatics⁵.

¹Kutter et al. (2011). Pol III binding in six mammals shows conservation among amino acid isotypes despite divergence among tRNA genes. *Nature Genetics*, 43: 948-955.

²Schmidt and Schwalie et al. (2012). Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. *Cell*, 148: 335-348.

³Wilson et al. (2012). Deep conservation of combinatorial transcription factor binding reveals the missing regulator in Haemophilia B Leyden. *In preparation*.

⁴Kutter and Watt et al. (2012). Rapid Turnover of Long Noncoding RNAs and the Evolution of Gene Expression. *PLoS Genetics*, 8, e1002841.

 $^{^5}$ Goncalves et al. (2011). A pipeline for RNA-seq data processing and quality assessment. *Bioinformatics*, 27: 867-869.

2.1 Introduction

Deep sequencing of cDNA molecules (RNA-seq) is becoming the tool of choice for gene expression studies, often replacing microarrays to estimate gene expression levels, and rapidly superseding exon arrays in alternative splicing analyses [153]. In fact RNA-seq allows researchers to study phenomena that were previously beyond the reach of microarrays, including allele specific expression [99] and the identification of previously unknown transcribed regions [146][50]. The popularity of the new sequencing methods for gene expression is attested to by the numerous papers recently published in high profile publications and by the increasing number of submissions to public data repositories such as the ArrayExpress Archive (AE) and the European Nucleotide Archive (ENA) [110][79].

Many methods have been developed recently to tackle different aspects of the analysis of RNA-seq data, but combining them into reliable analysis pipelines is an inherently study-specific task and poses ongoing challenges. The configuration options used for each tool affect the others used downstream, making it necessary for bioinformaticians to have a thorough knowledge of each tool and its internal workings. Furthermore, RNA-seq methods routinely generate tens of millions of raw sequence reads corresponding to hundreds of gigabytes of data, the analysis of which requires intensive computational processing steps that render the analysis impossible without the use of powerful servers. The trend in the gap between experimental throughput and processing speed as noted by Schatz et al. is widening, with the analysis component falling behind [131].

In light of these considerations I developed ArrayExpressHTS, an automated R/Bioconductor-based pipeline for pre-processing, expression estimation and data quality assessment of RNA-seq datasets. Starting from the raw read files it produces R objects containing expression levels for downstream analysis, along with graphical HTML reports for data quality assessment. The pipeline has a choice of analysis methods and guides their configuration, which it tries to configure optimally. However, enough flexibility is provided for power users to adjust all aspects of the pipeline within the well-known and powerful R language. The pipeline was only tested with data sequenced on Illumina platforms. However, despite being limited to a sequencing platform the pipeline is still of broad interested, given that

Illumina's machines are the sequencing platforms most used to date (Table 2.1).

Table 2.1: Number of studies per sequencing platform submitted to the ArrayExpress public database of functional genomic assays [110].

Platform	Studies in AE
Illumina	151
ABI SOLiD	1
454	4
others	13

2.2 Methods

2.2.1 The analysis pipeline

A diagram summarising the different steps in the ArrayExpressHTS pipeline is depicted in Figure 2.1. Running ArrayExpressHTS within R with default options is straight forward, with a simple call to the function ArrayExpressHTS. Data analysis begins by obtaining the input raw read files and the corresponding experimental metadata. This experimental metadata serves to create a set of options used to configure the analysis and includes, among others: experimental protocol information such as the retaining of strand information and the insert size in paired-end reads; experiment design information including the links between files and samples and their experimental factors (e.g. sex of the sample); and machine related information, such as the instrument used and the scale of the quality information.

Once all the necessary data is gathered, a HTML report is created. This report provides the investigator with diagnostics plots on the raw data that can be used for the assessment of the quality of the sequencing runs. Plots built upon the ones provided in the ShortRead [100] package are provided in a HTML report for individual samples, along with further between-sample comparisons (e.g. Figure 2.2 A and B).

Analysis proceeds with matching the reads to a reference (a genome or a transcriptome), with one of the available aligners: Bowtie [76], TopHat [145] or BWA [84]. The results of the alignment are saved in the standard SAM format and further

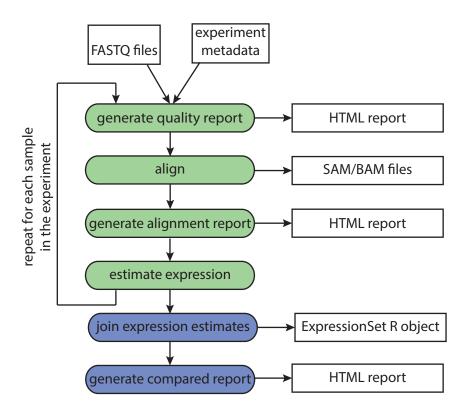


Figure 2.1: The Array ExpressHTS pipeline.

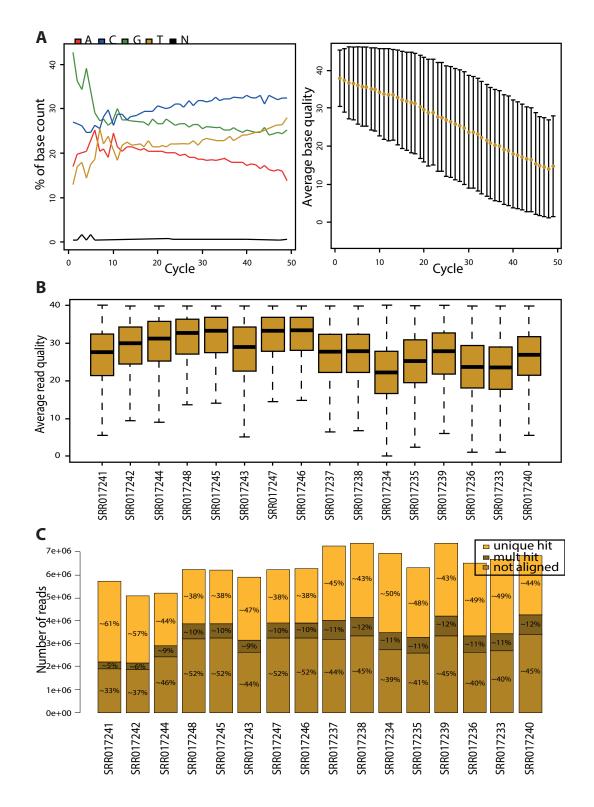


Figure 2.2: Example of plots included in the HTML reports for (A) raw data in individual libraries (B) raw data comparison between libraries (C) aligned data comparison between libraries. The list of all plots and respective legends is provided in the package Wiki page.

47

conversion to the BAM format (loadable into R) and sorting is performed seamlessly using SAMtools [85].

Aligned reads can then be filtered by a number of characteristics such as average base call qualities, number of allowed uncalled bases, by the size of runs of the same base at the head and tail of the reads, by read complexity as measured by a complexity score, by number of valid alignments, by number of reads with the same exact sequence, by genomic regions and many others.

In order to get the expression of features of interest (genes, transcripts or exons), aligned reads are either counted over those features and given as normalised (RPKM) counts or as normalised estimates as calculated by the statistical models Cufflinks using a reference [146] or MMSEQ [147]. The data is stored in a Bioconductor ExpressionSet object, grouping samples by factors and ready for downstream data analysis. A final HTML report is created providing information on the quality of the alignments and on the characteristics of the data (e.g. Figure 2.2C).

2.2.2 R cloud usage and analysis of public data

The description above is valid for a local usage of the ArrayExpressHTS pipeline. The pipeline can run locally or remotely on the EBI R cloud and can be used to analyse either local or publicly available data. Using it remotely on the EBI R cloud has some differences that allow it to make use of the distributed computing power of the EBI cluster, while the function interface remains exactly the same. The only difference for the user will be that the pipeline must now be called from within the R Workbench¹. The R Workbench, while looking just like an advanced graphical user interface for R, provides a pooling framework suitable for dispatching compute-intensive tasks to the server farm infrastructure at the EBI. When running the pipeline through it, a multi-sample experiment will be automatically distributed among several computing nodes, so that the number of samples processed in the time it takes to process a single sample is the same as the number of cluster nodes allocated to the user (the steps depicted in green in Figure 2.1 will be run in parallel for each sample).

¹http://www.ebi.ac.uk/tools/rcloud

Further differences exist in the input data preparation step. When the pipeline is run locally, data residing in a local computer can be used by pointing to its location on the filesystem; optionally, publicly available datasets in the AE Archive can be re-analysed by providing the function with the experiment's accession number, upon which all raw data files and relevant metadata will be downloaded from the appropriate databases (AE Archive and the ENA which in turn have a policy of data sharing with the NCBI's Sequence Read Archive). On the other hand, when running remotely on the EBI R cloud, calling the function with an accession number will not cause the data to be downloaded since it resides in a filesystem accessible to the EBI cluster. In this way a user wanting to re-analyse publicly available data will avoid downloading several gigabytes of raw sequence and can instead do all the processing remotely and eventually download results, quality reports and intermediate files. For a user wanting to analyse his/her own data this can be achieved by submitting this data to the AE Archive. The submission process¹ is guided by curators at the EBI. Data submitted to AE does not have to be public and can remain password protected until the submitter so wishes. Remote usage also provides the most up to date package, references, aligner indexes and annotation for all major organisms and access to the 3rd party software used, relieving the users from installing these in their own machines.

Experiment metadata can be provided in the function call itself as a list of options or through a MAGE-TAB like set of files [119]. This latest approach allows downloaded datasets available through the AE Archive to be re-analysed with the original experimental annotation provided by the submitter. Further options to be passed to the processing methods are documented and a set of reasonable options provided as default. References and their aligner index files are once again either given in a local directory or automatically downloaded from Ensembl [39] and created upon request.

2.3 Discussion

ArrayExpressHTS allows the users to generate a standard Bioconductor Expression-Set object containing expression estimates from raw sequence files, with a single R

¹described in http://www.ebi.ac.uk/microarray/submissions_overview.html

function call. The main benefits of ArrayExpressHTS are in the simplicity of its use, running in the same way either in a local computer or on the European Bioinformatics Institute R cloud and with local or public data, and in the opportunity for users or developers to extend and customise it for their needs. The pipeline can be used for individual data analyses or in routine data production pipelines and can easily be extended in the future to support other sequencing platforms, multiplexed data and the reporting of expression of non-annotated regions.

Chapter 3

Compensatory *cis* and *trans* regulation dominates the evolution of mouse gene expression

The work described in this chapter was done in collaboration with Ms. Sarah Leigh-Brown, who recently completed a Ph.D in high throughput genomics at Cambridge University, and with Dr. David Thybert. Sarah performed all the experimental work and David calculated the sequence conservation scores used in Figure 3.9 and Supplementary Figures A.6 and A.7. I performed all the data analysis and developed the statistical models used throughout under the supervision of Dr. John Marioni of the EMBL European Bioinformatics Institute. A manuscript describing this work has been prepared in collaboration with other authors and has been accepted for publication at the Genome Research journal¹ in August 2012.

¹Goncalves, A., Leigh-Brown S., (joint first), Thybert, D.T., Stefflova, K., Turro, E., Flicek, P., Brazma, A., Odom, D.T., Marioni, J.C. (2012). Compensatory cis-trans regulation dominates the evolution of mouse gene expression. *In press*.

3.1 Introduction

Identifying and characterising the regulatory mechanisms responsible for changes in gene expression levels is a key goal of molecular biology [139]. Transcriptional variation can explain phenotypic differences both between and within species - for example, differential expression of the Tan gene between North American *Drosophila* species underlies divergence of pigmentation [161], whereas variation in the expression levels of the LCT gene within the human population is associated with lactose tolerance [91].

All regulatory mutations that alter the expression level of a gene can be classified according to their location and linkage disequilibrium relative to the gene that they affect. For a given gene, its expression level can diverge between or within populations due to 1) regulatory mutations encoded in trans to that gene, which mediate differential expression via a diffusible element such as a protein or ribonucleic acid (e.g., a change in the expression level of a relevant transcription factor) or 2) regulatory mutations encoded in cis to that gene, which mediate differential expression directly by altering the local genomic sequence (e.g., a mutation in the promoter sequence which alters a transcription factor binding site, Figure 3.1). This distinction reflects underlying differences in the inheritance of the change in gene expression levels and the resulting selective pressures to which a mutation is exposed [81][95][163].

Given the different evolutionary implications of these regulatory mechanisms, a significant amount of effort has been expended on investigating the contribution of regulatory changes in *cis* and in *trans* to differences in gene expression. This has been studied at the single gene level using enhancer swap experiments where orthologous regulatory sequences from two species are used to drive the expression of a reporter gene in one of the species under study [45]. At the genome-wide level, regulatory mutations can be identified using expression Quantitative Trait Loci (eQTL) studies. In a typical eQTL study, the expression levels of all genes are measured across a population and genetic variants (e.g., Single-Nucleotide Polymorphisms, or SNPs) are typed in the same set of samples. For every gene, expression levels are correlated with the genotypes measured at each SNP. A significant SNP-gene association suggests that a regulatory mutation affecting the gene's expression is in

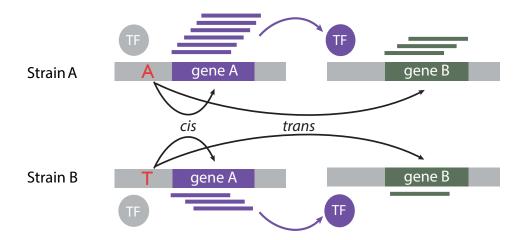


Figure 3.1: Cartoon of an example *cis* and *trans* effect. The two strains A and B have a variant in the promoter region of the TF-coding gene A. The variant affects the expression of gene A which in turn affects the expression of gene B. The variant regulates gene A in *cis* and gene B in *trans*.

high linkage disequilibrium with the SNP identified.

Despite their popularity, a significant challenge faced by eQTL studies is to distinguish between regulatory divergence in *cis* and in *trans*. In particular, eQTL studies that test all SNPs against all genes are statistically underpowered for identifying variants. To overcome this problem, eQTL studies typically focus on identifying *cis*-eQTL by performing analyses only on SNPs that are located proximal to a gene (for example within 200kb of its transcription start site). This restriction removes the possibility of identifying regulatory variants distal to a gene, which are most likely to regulate the genes expression in *trans* [43]. Further, while there is evidence that many *cis*-eQTL do regulate the proximal genes expression in *cis* [114] many do not [30].

A more powerful method for studying the relative contribution of regulatory variants in *cis* and in *trans* to the divergence of gene expression is to use first generation (F1) hybrids of two homozygous parents (F0s), such as inbred laboratory lines of mice, fruitfly, or yeast [160][143]. In these F1 hybrids, coding variants between the two parents allow allele specific expression to be measured. In the first generation hybrid of inbred strains, regulatory variants acting in *cis* remain linked to their target gene and result in allele specific expression. Regulatory mutations

acting in trans, however, influence both parental alleles equally in the F1 hybrid since they are exposed to the same cellular environment. A comparison of differential expression between the parent strains (F0) and allele specific expression in the hybrid (F1) therefore functionally distinguishes between regulatory divergence in cis and regulatory divergence in trans across the entire transcriptome. For genes with differential expression between the two parental strains, if the ratio of allele specific expression is equal to the ratio of expression between the parent strains, the difference can be attributed to one or more regulatory variants acting in cis. By contrast, if both alleles are expressed at the same level in the F1 hybrids, the difference is due to one or more regulatory variants that act in trans.

The recent and rapid development of next-generation sequencing technology has enabled the study of gene regulation genome-wide using such a hybrid system. RNAsequencing (RNA-seq) has been used to measure expression levels in the F0 animals and allele-specific expression (ASE) in the F1 hybrids of *Drosophila* and of yeast populations [95][34]. It has also been used to study Parent-of-Origin effects between mouse strains [49][165]. However the regulation of gene expression in a mammalian system using an F1 hybrid model has remained mostly unexplored. This is an important omission because the larger, less gene dense, mammalian genomes are thought to contain a greater proportion of regulatory DNA [102] than *Drosophila* and Saccharomyces, potentially resulting in different target sizes for mutations arising in cis and in trans. Here we used RNA-seq to measure transcript abundance in liver samples taken from multiple mice from two inbred mouse strains and their F1 hybrids. Providing insight into an issue that has recently proved contentious, we identified hundreds of genes with parent-of-origin specific patterns of expression. More importantly, these data allowed us to investigate whether regulatory divergence in trans plays a major role in underlying differences in gene expression levels, as has recently been observed in *Drosophila* [95]. Contrary to this, we found that a mixture of cis and trans acting variants drives the divergence of gene expression levels in closely related mammals.

3.2 Results

Two inbred mouse strains, C57BL/6J and CAST/EiJ, were crossed to generate both initial and reciprocal F1 crosses (Figure 3.2). These strains were derived from different sub-species of *Mus musculus* with a divergence time of approximately one million years. For each genetically distinct class of mice (F0_{C57BL/6J}, F0_{CAST/EiJ}, F1i - C57BL/6J x CAST/EiJ, F1r - CAST/EiJ x C57BL/6J, where the male parent is listed first), samples were collected from a single lobe of the liver from 6 male mice between the ages of 4 and 6 months (Supp Methods A.1.1). The 24 samples were then processed to generate strand-specific RNA-seq libraries, which were sequenced on the Illumina GAII platform using 72bp paired-end reads (Supp Methods A.1.2).

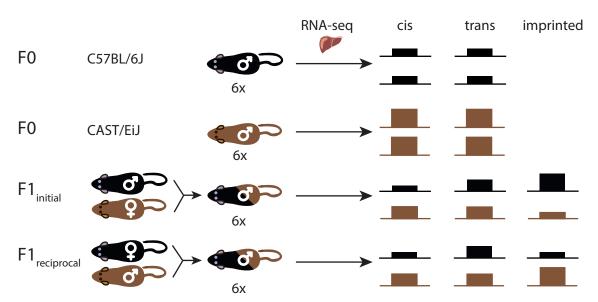


Figure 3.2: Liver samples were collected from 6 adult male mice from each of 4 groups: C57BL/6J, CAST/EiJ, F1 initial cross hybrid of a C57BL/6J male with a CAST/EiJ female, and F1 reciprocal cross hybrid of a C57BL/6J female with a CAST/EiJ male mice. For each sample the poly-adenylated fraction of total RNA was sequenced on an Illumina GAIIx with 72bp paired-end reads.

3.2.1 Allele specific expression estimates can be obtained for 30% of annotated mouse genes

Reads from each library were contiguously aligned to the appropriate transcriptome using Bowtie [76] (Supp Table A.1). For the F0 mice, the reference was either the C57BL/6J or CAST/EiJ reference transcriptome, as appropriate. For the F1 mice, reads were aligned to an artificial reference that contained both the C57BL/6J and the CAST/EiJ transcriptomes. For all libraries, MMSEQ was used to estimate gene expression levels and, in the case of the F1 samples, to estimate allele specific gene expression levels (Figure 3.3A). The expression estimates for the F0 data were normalised using the approach of Anders and Huber [5].

While for the F0 mice the mapping of reads to the individual transcriptomes is straightforward, the mapping of reads for the F1 hybrids is more difficult since the C57BL/6J and the CAST/EiJ alleles of each transcript only differ in a small number of positions. To assess our ability to measure expression levels in the hybrids, we considered reads generated from two F0 libraries (one C57BL/6J and one CAST/EiJ) and combined them to generate a simulated F1. We then compared, for each gene, the expression estimate for the C57BL/6J allele in the simulated F1 hybrid with the expression estimate of the same gene for the F0 sample (Figure 3.3B). We observed a high correlation between the two measurements. Furthermore, when we looked at the ratio of differential expression in the F0 mice and compared it to the ratio of allele-specific expression in the F1 mice, there was again good concordance. To further assess the quality of the data generated, we calculated the Pearson correlation between the gene expression levels across all 24 lanes of data sequenced and found that the samples generally clustered by strain as expected (Supp Figure A.1). Both of these observations provide confidence in our expression estimation strategy.

Finally, we defined genes as expressed using the following criteria. A gene is defined as expressed in the F0 mice if the expression estimate in at least one of the 12 F0 mice is >= 10. A gene is defined as expressed in both the F0 and F1 mice if the estimates in all samples are > 0 or if the F0 criterion is satisfied and, additionally, the estimate is >= 10 across both alleles of the gene in at least one of the 6 F1i and in one of the 6 F1r mice.

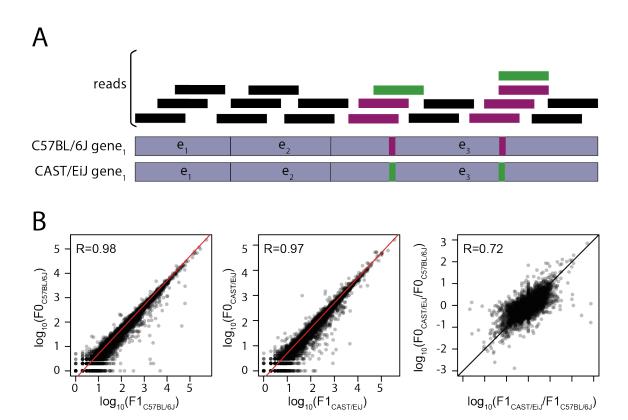


Figure 3.3: (A) In the F1 hybrids, reads are aligned to two versions of each transcript, one from the C57BL/6J reference and the other from the CAST/EiJ reference. In this figure a single transcript gene contains two heterozygous positions in exon 3. Reads that overlap the heterozygous positions contain either the C57BL/6J or the CAST/EiJ allele and thus map to only one of the references. The number of observed reads for each gene/transcript version is used by MMSEQ to estimate the expression of the whole transcript with an EM algorithm. The final EM expression estimate is then used as the initial value for a Gibbs sampler. Samples for the posterior distribution of the transcript estimates are summed to produce posterior distributions at the gene level. The expression estimates used in this analysis are the sample means of the gene estimate posteriors, along with their respective Monte Carlo standard errors (MCSE). (B) To quantify our ability to estimate allele specific expression we started by obtaining gene estimates for two F0 libraries, one C57BL/6J and one CAST/EiJ. We then created an artificial F1 library by combining reads from the two F0s. In order for the F1 library to have similar coverage to our real F1 libraries we calculated the average size of the real libraries. We then sampled half of this number of reads from each of the F0s to create the F1. When comparing the expression in the F0s to the allelic expression in the F1s (left and middle plots) we found a very good agreement between the two (Pearson correlation ≥ 0.97). The correlation was also high when we examined the correlation between the fold change of the F1 alleles and the fold change in the parents (right plot).

The power of our approach depends upon the number of genes that are expressed in the tissue under study containing a genetic variant between the parents (which allows the two alleles to be distinguished in the F1 hybrids). Of the set of 36,229 mouse genes defined in the Ensembl database (version 59; [39]), we detected the expression of 13,551 (37%) genes in the F0 mice, and 11,183 (31%) genes in both the F0 and the F1 mice. Of this latter set, 10,909 (98%) contain at least one genetic variant (a SNP) between the two parental strains.

We used pyrosequencing to validate our RNA-seq derived measures of allelespecific expression using a set of 5 genes, 3 of which contain multiple SNPs. In all cases the results were highly consistent (Supp Figure A.2; Supp Methods A.1.3).

3.2.2 Approximately a quarter of genes are differentially expressed between C57BL/6J and CAST/EiJ

To characterise the divergence of gene expression levels between C57BL/6J and CAST/EiJ we considered the set of 13,551 genes expressed in the F0 mice, and used DESeq [5] to identify genes that are differentially expressed. At a False Discovery Rate (FDR) cut-off of 5%, 3,906 genes (29%) were identified as differentially expressed, with 1,940 (49.6%) being more highly expressed in C57BL/6J. The genes up-regulated in C57BL/6J were significantly enriched for genes involved in fatty acid metabolism (KEGG categories "Peroxisome" and "Fatty Acid Metabolism" were both significant at an FDR of 5%; Table 3.1). Conversely, the genes up-regulated in CAST/EiJ were involved in drug metabolism (KEGG category "Drug metabolism - cytochrome P450") were highly enriched in the set that were up-regulated in CAST/EiJ compared to C57BL/6J (Table 3.2).

3.2.3 Expression levels of circadian rhythm genes varies widely

Since we had six biological replicates in each genetic class, we were able to identify genes with expression levels that were highly variable among individuals with the same genetic background. Within each strain we identified the top 10% of variable genes using a dispersion metric adapted from Anders and Huber. Briefly, we estimated the dispersion parameter under the negative binomial model described by Anders and Huber separately for each gene and strain [5]. As there is a depen-

Table 3.1: KEGG enrichments for genes up-regulated in C57BL/6J (obtained with GeneTrail [7]).

KEGG pathway	expected	observed	FDR (BH)	enrichment
Fatty acid metabolism	6.95	18	0.0039	up
Peroxisome	12.37	27	0.0039	up
PPAR signaling pathway	9.00	22	0.0077	up
Proteasome	6.95	16	0.0177	up
ErbB signaling pathway	11.01	2	0.0177	down
Prostate cancer	12.71	3	0.0177	down
MAPK signaling pathway	28.98	15	0.0335	down
Progesterone-mediated	9.83	2	0.0360	down
oocyte maturation				

Table 3.2: KEGG enrichments for genes up-regulated in CAST/EiJ (obtained with GeneTrail [7]).

KEGG pathway	expected	observed	FDR (BH)	enrichment
Drug metabolism - cy-	9.45	22	0.0104	up
tochrome P450				
Cell cycle	14.17	3	0.0138	down

dency between dispersion and expression, we normalised the estimated dispersions by subtracting a first-order polynomial fitted through the scatterplot of the estimated dispersions plotted against the mean expression levels (Figure 3.4). We then ranked the expressed genes by their normalised dispersion levels and called the top 10% as highly variable.

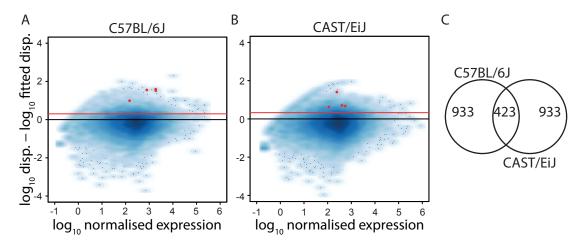


Figure 3.4: Detecting highly variable genes. (A) and (B) The mean expression levels of all C57BL/6J and CAST/EiJ samples (separate in each panel) are plotted against the estimated dispersions from which a first-order polynomial fitted through the scatterplot of the estimated dispersions plotted against the mean expression levels has been subtracted. Points above the red line represent the top 10% most variable genes. The red points represent the Hba-a1, Hba-a2, Hbb-b2 and Saa2 genes thought to be present due to blood contamination. (C) Overlap between the 10% most variable genes in C57BL/6J and in CAST/EiJ.

Amongst this set of highly variable genes, 423 were highly variable in both C57BL/6J and CAST/EiJ and this group was significantly enriched in genes that play a role in the regulation of circadian rhythm (e.g., Dbb, Npas2, Arntl, Per1, Per3). This set also includes a number of genes with expression levels that have been shown to vary in response to external stimuli such as diet (Egr1) and injury/infection (Cish). Finally, in one of the strains, we identified a small number of highly variable genes, Hba-a1, Hba-a2, Hbb-b2 and Saa2, which are not endogenously expressed in liver cells (unpublished data) and are instead likely expressed at high levels in a minority of samples likely due to blood contamination during sample processing (Supp Table A.2).

3.2.4 The identification of imprinted genes is strengthened by multiple replicates

Imprinting in mammals describes the situation where the allele specific expression of a gene is determined purely by the sex of the parent from whom the allele is inherited in a process regulated by differential methylation during gametogenesis [88]. The extent of imprinting has recently become highly contentious, with reports indicating low hundreds [28] to thousands [49] of imprinted loci in the developing brain of the same genetic cross we report here. Our data allowed us to estimate the scale of imprinting found in another somatic tissue, thus helping to provide an understanding of the extent of imprinting across other tissues.

Imprinting is also a confounding factor in the F1 hybrid study design, as it results in allele specific expression that is independent of regulatory divergence between the parental strains. By identifying imprinted genes we can remove them from downstream analyses. In the absence of information about the extent of imprinting in mammalian liver cells, we identified imprinted genes by comparing allele specific expression in the initial (F1i) and the reciprocal (F1r) hybrid crosses. We used a model based upon the Beta-Binomial distribution to find genes where the maternal allele is significantly more expressed than the paternal allele in both the initial and reciprocal crosses - these genes are likely to be enriched for those that are paternally imprinted. Analogously we can find genes that are maternally imprinted.

Briefly, for each gene we introduce the following notation:

```
n_j^{in}= expression summed across both alleles for the j^{th} F1 initial cross replicate z_j^{in}= expression of the C57BL/6J allele for the j^{th} F1 initial cross replicate n_j^{re}= expression summed across both alleles for the j^{th} F1 reciprocal cross replicate z_j^{re}= expression of the C57BL/6J allele for the j^{th} F1 reciprocal cross replicate where j=1,\ldots,6.
```

Subsequently, we assume that each count follows a beta-binomial distribution:

$$z_j^{in} \sim Bi(n_j^{in}, p_j^{in})$$
 where $p_j^{in} \sim Be(\alpha_1, \beta_1)$, and $z_j^{re} \sim Bi(n_j^{re}, p_j^{re})$ where $p_j^{re} \sim Be(\alpha_2, \beta_2)$.

We can then model the null (H_0) and alternative (H_1) hypotheses of no imprinting and imprinting, respectively using the following parameterisations:

$$H_0: \alpha_1 = \alpha_2, \beta_1 = \beta_2 \text{ and } H_1: \beta_1 = \alpha_2, \beta_2 = \alpha_1$$

To discriminate between the two hypotheses, we estimated the parameters using a maximum likelihood based approach, calculated the maximum likelihood at these values, and calculated the likelihood ratio between them.

Since the null and alternative models are not nested we cannot compare the ratio to the quantiles of a chi-squared distribution. Instead we determined the distribution of the likelihood ratios under the null hypothesis of no imprinting. To do this, for each gene, we used data from the initial cross to calculate the corresponding maximum likelihood estimates for α_1 and β_1 and then simulated data from a reciprocal cross drawn from the distribution with these parameters. Using the real initial cross and simulated reciprocal cross data we then calculated the likelihood ratio using the procedure described above. We took the distribution of likelihood ratios obtained using this approach as our null model under the hypothesis of no imprinting (Supp Figure A.3). Given this, we assigned a p-value to each gene in the following way:

- p-value of 0 if the likelihood ratio is above the highest value of the null
- p-value of 1/n if between the 1st and the 2nd highest values of the null, 2/n if between the 2nd and 3rd...

Finally we corrected the p-values for multiple testing using the Benjamini-Hochberg procedure and adjudged that a gene showed evidence for being imprinted if the q-value was less than 0.05.

As a control we considered how well we could identify parent-of-origin effects for genes on the X chromosome. Here, we expect that all genes should be expressed from the maternal allele. Indeed, we find that of the 284 genes expressed on the X chromosome, 268 (94%) showed the expected pattern, providing confidence in our analysis and our mapping strategy.

After excluding genes on the X chromosome we identified 290 and 245 genes that showed evidence of being paternally and maternally imprinted, respectively,

corresponding to 5% of all expressed genes containing a genetic variant (Figure 3.5, Supp Table A.3). Many of these genes are in distinct genomic clusters that have previously been associated with genetic imprinting, including the Callipyge locus on chromosome 12 (Meg3) and the Igf2r cluster (Slc22a3, Igf2r, Mas1).

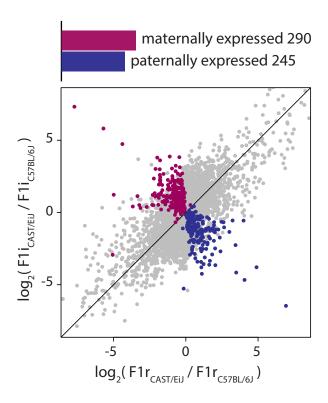


Figure 3.5: Imprinted genes. After removing genes on the sex chromosomes similar numbers of genes were found to be expressed from the maternal allele (290 genes, coloured pink) and from the paternal allele (245 genes, coloured blue). The average log₂ expression fold change between the two alleles in the reciprocal cross hybrids (F1r) and between the two alleles in the initial cross hybrids (F1i) is plotted on the x and y-axis, respectively.

We compared the set of imprinted genes identified in our study to a set of 20 genes imprinted in the mouse liver as described in two earlier studies [51][78]. Of the 20 genes identified previously, we were able to assess the imprinting status of 9 that were expressed in adult liver samples and that contained at least one SNP between C57BL/6J and CAST/EiJ. We identified 8 of these genes as being imprinted (the only gene that was not replicated, Airn, had low and variable expression across the

samples in our dataset). Gregg et al. recently tested for parent-of-origin effects genome-wide in brain using a C57BL/6J - CAST/EiJ hybrid system, and identified 1308 candidate imprinted genes [49]. Of this set, 534 are also expressed in the liver, of which we classify 25 (5%) as imprinted in our data. Possible reasons for the small overlap are the tissue-specificity of some imprinted loci and the important role of imprinting in brain development. Two differences in analytical approach can also in part explain this disparity. First, our study uses 6 replicates for the initial and reciprocal cross hybrids, lending it greater specificity and sensitivity than the Gregg et al. study in which replication was not used. Second, we assessed allelic imbalances at the gene level, while in the Gregg et al. study the allelic imbalances were assessed for individual SNPs. This can lead to difficulties when combining results across SNPs from the same gene, particularly when different SNPs yield contradictory results (as is often the case in Gregg et al. possibly due to uneven coverage of sequence reads along transcripts or because of confounding by alternative isoform usage, see Turro et al. [147] for a comparison of both approaches). Supporting this hypothesis, DeVeale et al. [28] recently re-analysed the data generated by Gregg et al. and found that the majority of the novel imprinted loci reported were either false positives or had an effect size that was too small to validate with pyrosequencing.

3.2.5 Most gene expression divergence is caused by a combination of *cis* and *trans* regulatory variants

We examined the divergence of steady-state gene expression levels using the set of 10,090 autosomal genes that were not imprinted and that were expressed both in the F0 and F1 mice. For each gene, we used a statistical framework based upon the Negative Binomial and Beta-Binomial distributions to assess whether the expression values in the F0 and the expression ratios in the F1 were consistent with the action of regulatory divergence. Specifically, we looked for: (i) genes whose regulation is conserved between the two strains - these genes show no evidence of differential expression in the F0 mice and equal expression of the C57BL/6J and CAST/EiJ alleles in the F1 mice; (ii) genes that show evidence of expression divergence due to one or more regulatory variant in cis - these genes show evidence of differential expression in the F0 mice and a concordant ratio of allele-specific expression in the

F1 mice; (iii) genes whose expression patterns are consistent with divergence due to one or more regulatory variant in trans - these genes are differentially expressed in the F0 mice but show equal expression of each allele in the F1 hybrids; (iv) genes that are expressed in a manner consistent with expression divergence due to one or more regulatory variant in *cis* together with one or more regulatory variant in *trans*. To classify gene expression levels into different regulatory categories, for each gene, we introduce the following notation:

 $x_i = \text{expression of the gene in the } i\text{th C57BL/6J F0 mouse}$

 $y_i = \text{expression of the gene in the } i \text{th CAST/EiJ F0 mouse}$

 n_j = number of reads mapping across both alleles in the jth F1 hybrid

 z_j = number of reads mapping to the C57BL/6J allele in the jth F1 hybrid

Here i takes values between 1 and 6, and j takes values between 1 and 12, since we have pooled the initial and reciprocal crosses together (after removing imprinted genes). Subsequently, we make the following distributional assumptions:

$$x_i \sim Poi(\mu_i), y_i \sim Poi(\nu_i), \text{ and } z_j \sim Bin(n_j, p_j)$$

Further, we impose the following prior distributions upon μ , ν , and p:

$$\mu_i = Ga\left(r, \frac{p_\mu}{1-p_\mu}\right), \ \nu_i = Ga\left(r, \frac{p_\nu}{1-p_\nu}\right), \ \text{and} \ p_j \sim Be(\alpha, \beta)$$

The marginal distributions of x_i , and y_i , are negative binomial and the marginal distribution of z_j is beta-binomial. Additionally, we note that r reflects the overdispersion (relative to a Poisson distribution); this parameter is estimated a priori using the approach of Anders and Huber. Subsequently, different constraints upon the parameters can be imposed to describe the following biological situations:

Conserved: $p_{\mu} = p_{\nu}$ and $\alpha = \beta$

Cis: $p_{\mu} \neq p_{\nu}$ and $\frac{\alpha}{\alpha+\beta} = \frac{\frac{p_{\mu}}{1-p_{\mu}}}{\frac{p_{\mu}}{1-p_{\mu}} + \frac{p_{\nu}}{1-p_{\nu}}}$ Trans: $p_{\mu} \neq p_{\nu}$ and $\alpha = \beta$

Cis & Trans: $p_{\mu} \neq p_{\nu}$ and $\alpha \neq \beta$

We allocated each gene into one of these four categories. To do so, for each gene

we fitted the four models described above to the data by maximising the likelihood function. After doing this, we used the Bayesian Information Criterion (BIC) to determine which of the four models best fitted the data for each gene.

In total, across the set of 10,090 genes, the majority (6,872; 68%) show evidence of their expression being regulated in a conserved fashion (Figure 3.6A), consistent with the number of genes not differentially expressed between the parental strains (71%). The second largest class corresponds to genes with expression levels consistent with regulatory variants in cis acting alongside regulatory variants in trans (1,758; 17%), with the third class corresponding to regulatory variants only in cis (1,391; 14%). By contrast, the number of genes whose expression levels are consistent with divergence due to regulatory variation solely in trans is small - only 69 genes (< 1%) fall into this category. When applying this classification only to genes above a range of fold-change cut-offs for the divergence between the strains or alleles, we have slightly less power to allocate genes to the trans class (relative to the cis or cis and trans classes) when the fold-change between the parental strains is small (Figure 3.7). However, the difference in power is small and does not affect any of our conclusions. Additionally, we observed that there was a slight tendency for the allelic expression of genes in the trans and conserved classes to be less well estimated than the expression of genes in the other classes (Supp Figure A.4). This might lead to an increase in the number of false positives in these two classes - however, this does not challenge our observation that only a small number of genes are regulated purely in trans. When we examined the set of genes classified as being regulated in cis we observed a depletion of genes involved in core cellular processes (e.g., transcription or splicing; Supp Table A.4), while the small set of genes regulated in trans were marginally significantly enriched for genes involved in transcription factor activity (Table 3.3).

We found that a surprisingly large proportion of genes have expression levels shaped by multiple regulatory variants both in cis and in trans (Figure 3.6A). Defining x_i as the average \log_2 fold change for the F0 data and y_i as the average \log_2 allelic ratio for the F1 data for the ith gene, we divided the cis and trans category into four classes in which the regulatory variants acting in cis and in trans:

(i) act in the same direction with a stronger effect from the ones in trans (cis+TRANS):

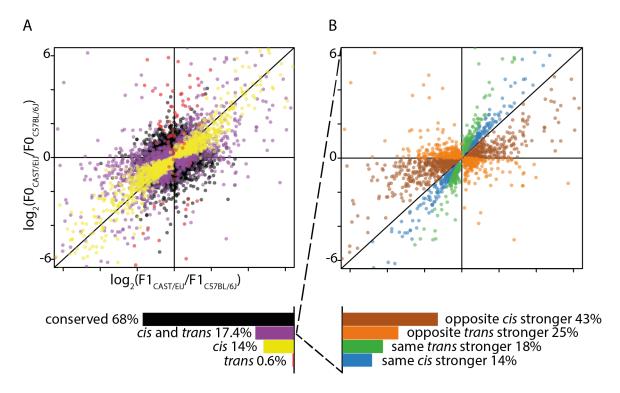


Figure 3.6: Classification of genes according to their pattern of gene expression divergence. The average log₂ expression fold change between the alleles in the hybrids (F1) and between the parental strains (F0s) is plotted on the x and y-axis, respectively. (A) Genes for which the expression levels have not diverged between the two strains are classified as conserved (coloured black), while genes in which expression has diverged are classified as cis, trans or cis and trans according to whether the divergence is explained by at least one regulatory variant acting in cis (coloured yellow) or in trans (coloured red), or by at least two regulatory variants one in cis and one in trans (coloured purple). (B) Subdivision of the cis and trans category. The regulatory variants can cause gene expression changes in the same direction with the regulatory variant in *cis* having a stronger effect on expression change than the regulatory variant in trans (blue) or the variant in trans having a stronger effect than the variant in cis (green). Expression changes can also be in opposite directions with the variant in cis having a stronger effect than the variant in trans (brown), or the variant in trans having a stronger effect than the variant in cis (orange).

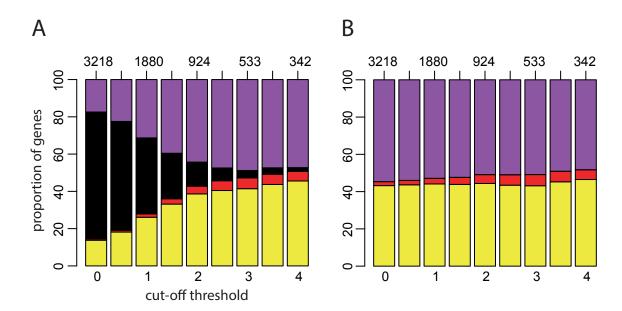


Figure 3.7: Classification using different fold change cutoffs. We used different subsets of genes to verify that the proportions allocated to each class are robust to differences in the level of divergence in expression levels between strains or alleles. We first let y denote the average divergence between strains and x denote the average divergence between alleles. Subsequently, for each threshold t ($t \in \{0, 0.5, 1, ..., 3.5, 4\}$), we considered the classification only for genes with $x^2 + y^2 > t$ (i.e., points that fall outside a circle with radius t in Figure 3.6). (A) Proportion of genes in the cis (yellow), trans (red), conserved (black), and cis+trans (purple) classes for each subset of n genes (written along the x-axis on the top) above each threshold t (along the x-axis on the bottom). (B) Same as panel A but including only the classes for which there is divergence of expression. The power to detect trans effects is slightly smaller when considering all genes, but the proportions of all classes are overall very similar at different fold-change cut-offs.

Table 3.3: GO enrichments for genes regulated in *trans* (obtained with GeneTrail [7]).

KEGG pathway	expected	observed	FDR (BH)	enrichment
T cell receptor signaling	0.18	2	0.0122	up
pathway				
GO term	expected	observed	p-value (raw)	enrichment
transcription factor activity	0.91	4	0.0119	up
SH3 domain binding	0.19	2	0.0149	up
protein domain specific	0.56	3	0.0176	up
binding				
monooxygenase activity	0.21	2	0.0182	up
sequence-specific DNA	0.68	3	0.0294	up
binding				

$$(0 < 2x_i < y_i)$$
 OR $(0 > 2x_i > y_i)$

- (ii) act in the same direction with a stronger effect from the ones in cis (CIS+trans): $(0 < x_i < y_i < 2x_i)$ OR $(0 > x_i > y_i > 2x_i)$
- (iii) act in opposing directions with the effect from variant(s) in cis being stronger (CIS-trans): $(0 < y_i < x_i)$ OR $(0 > y_i > x_i)$
- (iv) act in opposing directions with the effect from variant(s) in trans being stronger (cis-TRANS): $(x_i < 0 < y_i)$ OR $(y_i < 0 < x_i)$

From Figure 3.6B we observe an excess of opposite direction effects (categories (iii) and (iv); Figure 3.8, p-val $< 10^{-16}$ Fishers Exact Test), where the regulatory variants in *cis* and in *trans* act in opposite directions in the F1 hybrid.

3.2.6 Genes with regulatory divergence in trans show stronger sequence constraint

To understand whether there is an association between regulatory change and sequence evolution in mammals, we examined whether there was a difference in conservation of the coding sequence for genes with divergent expression due to regulatory change purely in *cis* and regulatory change purely in *trans*. For each exon we

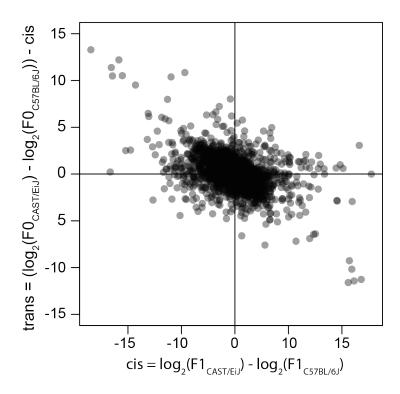


Figure 3.8: Comparing cis and trans effects for genes with expression levels that diverge due to regulatory variants both in cis and in trans. Cis effects are plotted against trans effects where cis is defined as the log fold change between the alleles in the F1s and trans is defined as the cis effect minus the log fold change between the CAST/EiJ and the C57BL/6J parental samples (this latter quantity is the sum of cis and trans effects). We observe that there is an excess of genes (p-val < 0.05 with Fishers Exact Test) in the top left and bottom right quadrants (i.e., points falling on the anti-diagonal) corresponding to cis and trans effects that act in opposing directions.

computed its GERP (Genomic Evolutionary Profiling) score using all mammalian species in the Ensembl compara database [22][150] and looked at the distribution of conservation rates (the rate of bases with a GERP score greater than 1.4) in each regulatory category. We found that genes with conserved regulation and those with divergent expression driven only by diffusible element(s) in trans are significantly more conserved at the sequence level than genes with divergent expression that is either partially or entirely regulated by variants in cis (Figure 3.9A, Supp Table A.5). Importantly, despite our observation that the expression of genes regulated by variants in trans was less well estimated than the expression of genes regulated by variants in cis, we did not find a relationship between the expression estimates standard errors and the conservation rates (Supp Figure A.5). To further test this pattern, we again sub-divided the set of genes that showed divergent expression due to the combined effect of regulatory variants in *cis* and in *trans* (Figure 3.9B). When the two regulatory mechanisms act in concert, the genes for which the regulatory change(s) in trans are stronger are more conserved at the sequence level than the set of genes for which the regulatory change(s) in cis are stronger (Table A.5). This provides evidence that between closely related mammalian subspecies, genes with divergent expression due to regulatory variants in cis have less conserved coding sequence throughout the mammalian clade than genes that have conserved regulation or that have divergent expression due to a regulatory change in a diffusible element.

3.3 Discussion

To investigate the divergence of gene regulation in mammals we tested the relative contribution of regulatory divergence only in *cis*, only in *trans*, and the action of changes both in *cis* and in *trans* over 1 million years of subspecies divergence using an F1 hybrid system. Since our approach requires allele specific expression to be measured, our conclusions are based upon the set of genes that have at least one genetic variant between C57BL/6J and CAST/EiJ. However, since 98% of genes expressed in the mouse liver have at least one such variant our results can be extrapolated to the regulation of gene expression across the entire mouse genome. We used liver tissue in this study, since it is extremely homogeneous, with 70% of the cells in the liver being hepatocytes [133]. Moreover, there is no evidence that liver

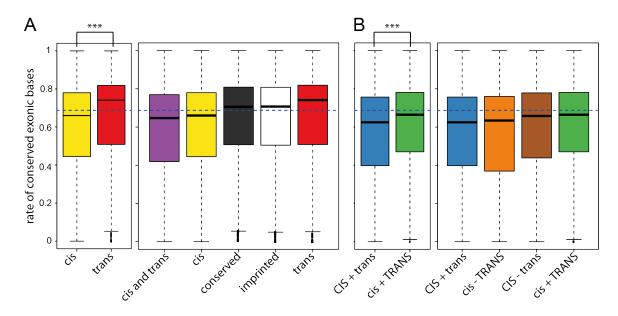


Figure 3.9: Exonic sequence conservation scores for the different classes of regulatory divergence. GERP conservation scores relative to all mammalian species in the Ensembl compara database were calculated for every exonic base. The proportion of bases above a GERP score of 1.4 in each exon was calculated for exons in each category. The mean conservation score for all exons is represented as a horizontal dashed blue line. (A) The conservation proportions for exons in the trans category are significantly higher than for genes in the cis category (Table A.5). Imprinted and conserved genes are also significantly more conserved than the cis and the cis and trans categories. (B) The cis and trans category is sub-divided into 4 subcategories: cis and trans in the same direction with cis stronger (CIS+trans), cis and trans in the same direction with trans stronger (cis+TRANS), cis and trans in opposite directions with cis stronger (CIS-trans) and cis and trans in opposite directions with trans stronger (cis-TRANS). As in (A), for the two categories where the cis and trans regulatory variants act in concert, the set of exons from genes for which the trans effect is stronger also show higher conservation than the set for which the cis effect is stronger. Supplementary Figures A.6 and A.7 show that the results do not change when different GERP conservation thresholds are used or when promoter regions as opposed to the coding sequence are considered.

gene expression diverges between mammalian species at a faster rate than other tissues, as there is for the human brain [35], suggesting that the liver is representative of most somatic tissues.

3.3.1 Phenotypic diversity and intra-species heterogeneity in expression

Our analysis of differences in expression levels between the two strains using the F0 data revealed a relatively large number of differentially expressed genes. Despite the parent sub-species last sharing a common ancestor less than one million years ago, 3,906 genes were differentially expressed, compared to the 3,335 genes that were recently found to be differentially expressed between human and chimpanzee liver samples, two species that diverged approximately 6 million years ago [13]. This observation may be influenced by our use of inbred mice reared in the same environment and fed the same diet, thereby reducing intra-species variation in expression and increasing the statistical power to detect small, reproducible differences in expression between strains. Nevertheless, the large number of differentially expressed genes suggests that there has been a relatively rapid divergence in the regulation of gene expression levels in the liver between C57BL/6J and CAST/EiJ compared to humans and chimpanzees. This may be attributable to the strong selective breeding that mouse strains have been subjected to, along with the relatively large population size and short generation time of Mus musculus subspecies, compared to that of human and chimpanzee.

When we focused on the set of genes that showed high variability within both the C57BL/6J and the CAST/EiJ sample groups, we observed that many of them are linked to external stimuli like the fed or fasted state (fat, glucose), chemical stimuli (pheromones, organic substances) and injury/infection (cytokine signaling, inflammation) or to diurnal expression changes (circadian rhythm). Given the large number of biological replicates, this set of highly variable genes provides good candidates for explaining subtle phenotypic differences between inbred mice that have been reared within the same environment.

3.3.2 A continuum of imprinting

We used the F1 hybrids to investigate the extent of imprinting in the mouse liver. Our analysis suggested that a relatively small number of genes (\sim 5% of testable genes) showed statistically significant evidence of being imprinted. The number of genes identified and the approximately equal number of maternally and paternally imprinted genes (46% and 54%, respectively) is broadly consistent with other recent RNA-seq based studies of imprinted genes in mammalian systems [155][6]. Amongst the set of maternally imprinted genes we noted a functional enrichment of genes involved in cell-cell signalling, limb morphogenesis and reproductive processes, none of which are normal functions of the liver. One possible explanation for this is that the imprinting of these genes is functionally relevant in the reproductive organs, or during morphogenesis, where parent-of-origin effects are known to play a key role, and the imprinted status in the adult liver is a passenger effect with limited relevance to this tissue. This observation is consistent with imprinting playing a minor or inconsequential role in adult mouse liver, which leads us to suggest that these genes are likely to be imprinted across all somatic tissues of the mouse.

Across the set of imprinted genes a continuum of parent-of-origin effects was observed, from small allelic ratios to large ones (Supp Figure A.8). This is consistent with recent RNA-seq based studies of imprinted genes in the mouse placenta at E17.5 [155] and in the mouse brain [49][28], all of which observed that only a small proportion of imprinted genes had one allele that was completely silenced. The increasing evidence for a continuum of parent-of-origin effects highlights a limitation of current models of how imprinting arises, and suggests further work is necessary to understand the mechanism by which genes are biased towards a parental allele, in the absence of complete allelic silencing.

3.3.3 Using the hybrid system to study the divergence of gene expression levels

Using our hybrid system we determined that the regulation of 32% of genes expressed in the mouse liver has diverged between C57BL/6J and CAST/EiJ, which is a relatively large proportion given the liver's highly conserved function and phenotype. For the small set of genes that have a regulatory variant solely in *trans* we

observed that their exonic and promoter sequence is significantly more conserved among mammals than that of genes with regulatory variants only in *cis* or in *cis* and in *trans*, suggesting that the rewiring of gene expression via *trans* variants is more likely to affect genes with a highly conserved coding sequence. For each gene we need at least one variant between the coding sequences of the parents to distinguish between the two alleles in the F1s. Given the relatively higher conservation of genes with differential expression regulated by a *trans* variant, the set of genes without a variant might disproportionately contain genes that have a regulatory variant that acts in *trans*. However, since less than 2% of expressed genes in the mouse liver have no coding sequence variant this is not likely to significantly affect our results.

The proportions of genes allocated to each regulatory class are consistent with a number of recent studies. When a recent eQTL study within a human population correlated all SNPs with all genes (i.e., not only focusing on cis-eQTL) the number of genes demonstrating divergence in expression due to a change in an element distal to the gene (likely corresponding to a trans mutation) was found to be extremely small [114]. Further, our classification is consistent with a recent survey of gene regulation experiments performed by manipulating the promoter region in insects and worms [45]. By utilising a highly curated set of genes, this study observed that the primary form of regulatory divergence was either driven by changes that arose purely in cis or by a combination of changes in *cis* and in *trans*, with the number of genes with only trans regulatory divergence being small, especially in insects. The same conclusion was supported by older studies in Drosophila using a small set of genes [160], which found patterns of regulatory changes similar to those that we identified in mouse. By contrast, a more recent study of F1 hybrids using RNA-sequencing in Drosophila [95] found a much larger number of genes with regulatory changes only in trans than only in cis. Possible reasons for this discrepancy include: i) genuine differences in the proportion of genes regulated in *cis* and in *trans* between mammals and flies; ii) differences in the length of intergenic (i.e., potentially regulatory) regions between the two taxa; iii) alternative analysis strategies; or iv) differences in the study design (McManus et al. used a pooled F1 hybrid approach and had only a small number of biological replicates in each set; moreover, they pooled tissue from the entire animal while we focused on tissue samples taken from an individual tissue).

One of the most interesting observations in our study is the high proportion of genes with multiple regulatory changes. While it is not possible to use our approach to differentiate between a single regulatory change in cis and multiple regulatory changes in cis, all genes classified with regulatory changes both in cis and in trans necessarily have multiple regulatory mutations - and the majority of genes with divergent expression fall into this category. We cannot use our data to determine directly whether these cis and trans regulatory changes arose independently in each strain or whether they arose in the same strain. If the regulatory variants in cis and in trans arose independently in each strain, this could contribute to hybrid incompatibilities [95][75]. If this were the explanation for the majority of genes in this class it seems likely that we would observe equal proportions of regulatory changes acting in the same and opposing directions upon gene expression levels. Instead, we observed that a significantly higher proportion of genes were regulated by cis and trans mutations that act in opposing directions, suggesting that, for the majority of genes, the regulatory changes most likely arose on the same lineage. One way this could occur is if there is directional selection upon the expression level of the genes in this category. However, since the majority of cis and trans variants act in opposing directions, it indicates that stabilising selection is a more likely explanation.

The presence of at least two opposing regulatory variants could arise via an initial regulatory change in *cis* that alters the linked genes expression, followed by a counteracting regulatory mutation in *trans*. Since changes in *trans* will likely affect a large number of genes (due to their inherently greater pleiotropy than changes in *cis*) as well as the specific gene with the *cis*-regulatory variant, this scenario is unlikely, unless all of the genes targeted by the diffusible factor have *cis*-regulatory variants that act in the same direction (relative to the change in *trans*).

The opposite order of events, where the first regulatory change arises in a diffusible element that acts in *trans* to a number of genes, seems more plausible. A regulatory variant that acts in *trans* can rapidly alter the expression profile of a large number of genes (potentially conferring a fitness advantage), but does not alone allow the fine-tuning of individual gene expression levels. Hence, the genes regulated by the specific *trans* factor may come under selective pressure to modulate their expression levels to compensate for the change imposed by the *trans* variant. The easiest way to do this is for each gene to accumulate compensatory variants that act in *cis*. We note that this model of gene regulation evolution might be especially pertinent for domesticated animals, due to the strong selective pressure imposed to obtain specific phenotypes. Gene regulation in small wild populations might evolve under a more neutral evolutionary model.

In summary, our study provides a comprehensive characterisation of gene regulation in a mammalian system to date, and establishes the relationship between gene sequence divergence and regulatory divergence in mammals. It demonstrates that amongst the set of genes with divergent regulation between two closely related mouse strains, the majority are regulated by variants that have arisen both in *cis* and in *trans*. Further, in the majority of cases, these multiple regulatory variants act in opposite directions, suggesting extensive compensatory regulation of gene expression levels. The most likely explanation for this is that the fine-tuning of individual gene expression levels occurs via *cis* regulatory variants that arise following a regulatory change that occurs in *trans*. Thus, many *cis*-regulatory variants may arise as a form of gene expression compensation, and that therefore they may not be the primary targets of natural selection. This has important implications for understanding mammalian gene expression divergence and for understanding how speciation occurs.

Chapter 4

Decoupling of isoform and gene expression evolution in mice

In this chapter I reanalyse the mouse hybrid data already described with the objective of studying the regulation of isoform usage. I present the preliminary results of the analysis, which was my own work under the supervision of Dr. John Marioni. The experimental validation steps required for the completion of this work will be performed by Ms. Sarah Leigh-Brown.

4.1 Introduction

In the previous chapter I studied the process of expression regulatory divergence between closely related mouse strains at the gene level. However, using gene level summaries masks potentially important divergence in isoform usage. For example, it masks divergence that does not alter the overall gene expression level between the strains.

Most mammalian genes are thought to give rise to multiple isoforms with potentially different function. Furthermore, differential isoform usage has been proposed to be an important driver of phenotypic complexity in mammals [153]. Indeed, many genetic variants affecting alternative splicing have been directly implicated in disease or have been found to underlie disease susceptibility. For example, differential isoform usage of the GPRA gene between human populations is thought to underlie asthma susceptibility [154]. Importantly, the mechanisms regulating isoform usage differ from those that regulate gene expression levels, which might lead to differences in the proportions of *cis* and *trans* acting regulatory elements.

In the previous chapter I also identified genes with parent-of-origin effects. In this context, potentially important isoform specific imprinting effects might also be masked by the aggregation of isoform levels into gene summaries. Complex imprinting patterns have been previously described for a small number of genes in which there is an allele-specific use of alternative promoters or polyadenylation sites (but not splicing) [162]. For example, Wood et al. recently described the complex imprinting pattern of the multiple isoforms of the H13 gene [162]. H13 overlaps with Mcts2, a non-coding gene whose promoter lies in one of H13's introns. This promoter is associated with a CpG island that has been shown to be differentially methylated in the mouse brain. On the maternal allele the CpG island is methylated causing the internal Mcts2 promoter to be inactive and allowing the expression of full length isoforms of H13. On the paternal allele Mcts2 is expressed causing the premature truncation of the H13 isoforms into their shorter forms, resulting in the maternal specific expression of the longer forms and the paternal specific expression of the shorter forms. Gregg's genome-wide study of parent-of-origin effects in the mouse brain, the only genome-wide RNA-seq study to look at imprinting so far, reported hundreds of genes with multiple SNPs with disagreeing imbalances [49].

However, as discussed previously, a large number of imprinting calls are likely to be false positives due to limitations of a SNP by SNP analysis and lack of replication.

The hybrid system described in the previous chapter can be used for the study of both isoform specific parent-of-origin effects and to study the relative contribution of cis and trans regulatory variants to differential isoform usage. Such a hybrid system has previously been used for the genome-wide study of isoform specific imprinting in the mouse brain by Gregg et al. and Xie et al. [165], however it has not been used for the study of imprinting in the mouse liver nor for the study of isoform regulation. Here I describe the use of the experimental data presented in the previous chapter to start addressing these challenges. Using the F1 hybrids I identify a number of candidate loci with complex imprinting patterns and using the full hybrid system I observe that divergence in isoform usage is mostly driven by trans acting variants in a model mammalian system over a small evolutionary scale.

4.2 Results

The experimental design and data used here have been described in the previous chapter. Reads from each library were mapped to the transcriptome as before, with the reads from the F0 mice being mapped to the appropriate parental reference transcriptome, and with the reads from the F1 mice being mapped to a reference containing both parental versions of each annotated transcript. MMSEQ was then used to obtain haplotype and isoform specific expression (Figure 4.1).

Deconvolving isoform levels estimates is difficult, especially given the complexity of splicing. In the previous chapter we used gene level estimates obtained by summing over the isoform components within each gene. This gives us more precise estimates than estimates obtained at the isoform level, as is shown for simulated data in Turro et al. and by validation with an independent assay (qRT-PCR) in Glaus et al. [147][44]. The power to obtain a reliable estimate for an isoform depends on the number of reads mapping uniquely to it, which in turn depends on the length of the region that is unique to the isoform and on the number of reads overlapping it. This power should be reflected by the Monte Carlo standard errors (MCSEs) of the isoform expression estimates provided by MMSEQ and, as shown in Figure 4.2, the MCSEs relate to the number of unique reads mapping to the isoform. Using

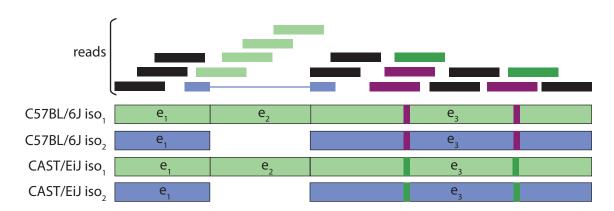


Figure 4.1: In the F1 hybrids, reads are aligned to two versions of each transcript, one from the C57BL/6J reference and the other from the CAST/EiJ reference. In this figure a gene has two isoforms that differ in the inclusion of exon 2 and the two strains differ from one another at two heterozygous positions in exon 3. Reads that overlap exon 2 will map to the two versions of isoform 1, while reads that overlap the heterozygous positions will map to isoform 1 and isoform 2 of only one of the strains. The number of observed reads for each gene/transcript version is used by MMSEQ to estimate the expression of the whole transcript.

the same simulated data described in the previous chapter we observed that the correlation between the measurements improved when using isoform subsets under differing MCSE thresholds (Figure 4.3A and B).

Overall, we found that of the 87862 mouse transcripts annotated in Ensembl v59, 52477 (60%) transcripts have some evidence of expression (at least one unique mapping read) in at least one sample. Of this set, 32594 isoforms had MCSEs $< t_1$ ($t_1 = 0.044$) for at least three out of six samples in either F0_{C57BL/6J} or F0_{CAST/EiJ}, and 13589 isoforms further had MCSEs $< t_1$ for three out of six samples in either F1i_{C57BL/6J} or F1i_{CAST/EiJ}, and in either F1r_{C57BL/6J} or F1r_{CAST/EiJ}. Of this latter set, 12466 isoforms, corresponding to 9613 genes, had at least one variant between the two parental strains.



Figure 4.2: The expression levels of all transcripts in one of the F0 libraries are plotted against the respective Monte Carlo standard errors. The MCSEs are related to the expression level of the gene and to the number of reads uniquely mapping to the transcript. The biggest drop in average MCSEs comes from the removal of genes with no unique reads so a sensible threshold could be set to the highest MCSE of the set of genes which have at least one unique read ($t_1 = 0.044$, horizontal dashed line).

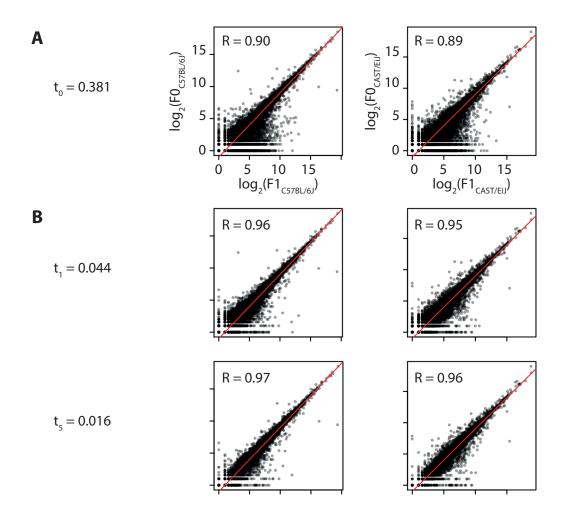


Figure 4.3: To quantify our ability to estimate allele specific isoform expression we created an artificial F1 library as described in Section 3.2.1 and compared the original expression levels to the deconvoluted ones. (A) When comparing the expression in the F0s to the allelic expression in the F1s without sub-setting by the MCSEs we found a very good agreement between the two (Pearson correlation ≥ 0.89). However, expression at the isoform level is less well estimated than at the gene level (see Figure 3.3, Pearson correlation ≥ 0.97). (B) When subsetting the set of isoforms to only the ones under a MCSE threshold t ($t \in \{t_1, t_5\}$ corresponding to the maximum SE among isoforms with $\{1, 5\}$ unique reads) the agreement improves (Pearson correlation ≥ 0.95).

4.2.1 Isoform level estimates reveal complex patterns of imprinting

To identify isoforms with parent-of-origin effects we used the set of 12466 isoforms that were reliably estimated in the F1s and that had a variant between the strains. Using the same Beta-Binomial model and testing approach of the previous chapter we found 422 and 434 autosomal transcripts paternally and maternally imprinted, in total corresponding to 820 genes with at least one imprinted transcript at a false discovery rate of 5% (Figure B.1). The number of genes found to be imprinted in this analysis differs from the number found in the gene level analysis (535 imprinted genes) partially because the set of features assessed in both analyses is not completely overlapping due to different filtering procedures. To assess the comparability of the imprinting calls found in both analyses, we looked at the 3231 genes with one and only one annotated isoform assessed. We found that 98% of the genes imprinted at the gene level were also imprinted at the transcript level, giving us confidence in our imprinting calls. On the other hand, we have more power to detect imprinting at the transcript level and found that 23% of the genes imprinted at the transcript level were not imprinted at the gene level. This difference arises from two possible reasons: 1) because we used different data to generate the distribution of likelihood ratios for the null hypothesis of no imprinting and 2) because the number of tests performed at the isoform level analysis is larger. Finally, for multi-isoform genes the imprinting calls between the gene level and the transcript level analysis can be different due to complex imprinting patterns of the isoforms components. Comparing our imprinting calls to the set of genes known to be imprinted in the mouse liver, we now identified all 9 of them, including Airn, which was not detected as imprinted at the gene level (Supp Table B.1).

Using the isoform level imprinting calls we observed 19 complex imprinting events, including H13, in which isoforms from the same gene are imprinted in opposite directions. For 17 of these genes, isoforms with opposite imprinting effects had alternative first exons (AFE), alternative TSSs within the same promoter (ATSS) or alternative polyAdenylation sites (APOL, Table 4.1), which is compatible with current models of how complex imprinting is thought to happen. With the exception of H13, none of these was previously described to be imprinted. We also looked for

Table 4.1: Genes with complex imprinting patterns. Transcripts are maternally (M) or paternally (P) expressed and differ due to alternative first exons (AFE), alternative TSSs within the same promoter (ATSS), splicing (SPL) and/or alternative polyAdenylation sites (APOL). Columns x and y contain the average log₂ expression fold change between the two alleles in the F1r and between the two alleles in the F1i, respectively.

gene	transcript	exp.	event	biotype	У	х
1	5430407P10Rik-202	M	ATSS, SPL, APOL	protein coding	2.00	-0.47
1	5430407P10Rik-203	P	ATSS, SPL, APOL	protein coding	-1.48	0.57
2	Ahctf1-001	M	AFE, SPL, APOL	protein coding	1.79	-1.01
2	Ahctf1-008	P	AFE, SPL, APOL	retained intron	-1.67	2.36
3	Asl-006	M	ATSS, SPL, APOL	retained intron	-0.06	-0.73
3	Asl-008	P	ATSS, SPL, APOL	protein coding	-2.00	0.68
4	BC023814-206	M	AFE, SPL, APOL	protein coding	2.52	-2.83
4	BC023814-208	P	AFE, SPL, APOL	retained intron	-2.67	0.62
5	Clpb-001	M	ATSS, APOL	protein coding	1.90	-0.82
5	Clpb-201	P	ATSS, APOL	protein coding	-1.45	1.02
6	Cops5-001	M	ATSS, SPL, APOL	protein coding	0.24	-0.24
6	Cops5-003	P	ATSS, SPL, APOL	retained intron	-1.76	0.48
7	Fgfr3-003	M	AFE, SPL, APOL	retained intron	2.79	-0.85
7	Fgfr3-201	P	AFE, SPL, APOL	protein coding	-0.68	0.48
8	H13-001	M	AFE, ATSS, SPL, APOL	protein coding	3.15	-2.75
8	H13-002	M	AFE, ATSS, SPL, APOL	protein coding	2.81	-6.38
8	H13-004	M	AFE, ATSS, SPL, APOL	retained intron	2.98	-1.03
8	H13-005	P	AFE, ATSS, SPL, APOL	retained intron	-3.21	4.07
8	H13-006	P	AFE, ATSS, SPL, APOL	protein coding	-3.00	5.46
8	H13-201	M	AFE, ATSS, SPL, APOL	protein coding	2.37	-5.65
8	H13-202	M	AFE, ATSS, SPL, APOL	protein coding	2.39	-1.80
9	Khdrbs1-001	P	SPL, APOL	NMD	-1.38	4.59
9	Khdrbs1-002	M	SPL, APOL	protein coding	4.10	-2.28
10	Khk-002	P	ATSS, SPL, APOL	protein coding	-1.97	1.94
10	Khk-003	M	ATSS, SPL, APOL	protein coding	4.07	-2.67
11	Nelf-014	M	not overlap	proc. transcript	2.57	-0.48
11	Nelf-016	P	not overlap	proc. transcript	-1.18	4.38
12	Orai1-001	M	SPL, APOL	protein coding	2.16	-2.00
12	Orai1-201	P	SPL, APOL	protein coding	-5.51	2.88
13	Rbpms-202	M	SPL, APOL	protein coding	4.54	-2.01
13	Rbpms-203	P	SPL, APOL	protein coding	-1.58	0.48
14	Recql5-001	M	AFE, SPL	protein coding	2.17	-1.89
14	Recql5-002	Р	AFE, SPL	proc. transcript	-2.85	1.43
14	Recql5-005	M	AFE, SPL	proc. transcript	2.61	-0.80
15	Sat2-001	M	ATSS, SPL, APOL	protein coding	4.04	-2.56
15	Sat2-003	Р	ATSS, SPL, APOL	retained intron	-3.99	0.89
16	Sfrs11-001	P	ATSS, SPL, APOL	protein coding	-3.53	2.84
16	Sfrs11-008	M	ATSS, SPL, APOL	NMD	0.72	-3.77
17	Tmub1-001	M	AFE, APOL	protein coding	2.65	-1.58
17	Tmub1-002	P	AFE, APOL	protein coding	-1.46	1.20
18	Usp4-201	P	SPL	protein coding	-4.01	3.57
18	Usp4-202	M	SPL	protein coding	5.10	-2.79
19	Zcchc6-201	M	SPL	protein coding	0.45	-0.44
19	Zcchc6-202	P	SPL	protein coding	-0.19	0.16

Table 4.2: Clusters of genes imprinted in opposite directions. Transcripts are maternally (M) or paternally (P) expressed. Columns x and y contain the average \log_2 expression fold change between the two alleles in the F1r and between the two alleles in the F1i, respectively.

cluster	transcript	strand	expressed	biotype	У	X
1	Arrdc3-001	+	M	protein coding	0.89	-1.16
1	RP23-128L22.2-001	-	P	processed transcript	-1.74	1.25
2	AC087541.3-201	+	M	lincRNA	0.70	-2.90
2	Rsl1d1-001	-	P	protein coding	-1.21	7.76
3	Airn-001	+	P	antisense	-1.87	2.61
3	Airn-201	+	P	antisense	-1.36	3.68
3	Igf2r-001	-	\mathbf{M}	protein coding	7.67	-8.10
3	Mas1-001	-	\mathbf{M}	protein coding	3.28	-2.92
3	RP23-432O2.2-001	+	P	processed pseudogene	-1.51	2.72
4	Aip-002	-	P	protein coding	-2.47	0.51
4	Tmem134-005	+	M	protein coding	3.07	-4.28
5	H13-001	+	M	protein coding	3.15	-2.75
5	H13-002	+	M	protein coding	2.81	-6.38
5	H13-004	+	\mathbf{M}	retained intron	2.98	-1.03
5	H13-005	+	P	retained intron	-3.21	4.07
5	H13-006	+	P	protein coding	-3.00	5.46
5	H13-201	+	\mathbf{M}	protein coding	2.37	-5.65
5	H13-202	+	\mathbf{M}	protein coding	2.39	-1.80
5	Mcts2-001	+	P	protein coding	-6.95	7.36
6	Pex10-001	+	P	protein coding	-1.09	0.96
6	Rer1-001	-	M	protein coding	3.13	-3.34
7	Mrps25-003	-	P	processed transcript	-1.35	3.27
7	Nr2c2-001	+	M	protein coding	1.17	-1.47
8	$1300018I17 Rik \hbox{-} 207$	-	\mathbf{M}	retained intron	1.25	-0.86
8	Zfp276-001	+	P	protein coding	-5.49	0.95

clusters of overlapping genes with at least two genes imprinted in different directions. We detected 8 clusters, including the well known H13-Mcts2 and Igf2r-Airn examples (Table 4.2). Interestingly, six of the clusters included at least one protein coding and one anti-sense non-coding transcript. Gene silencing by an anti-sense non coding gene has been observed for a number of known imprinted genes (Igf2r, Kcnq1 and Gnas, [72]) and these results suggest that our novel clusters may be regulated in a similar way. Given that DNA methylation is thought to be involved in most genomic imprinting events we looked for known allele specific differentially methylated regions (DMRs) occurring within or nearby our complex genes and clusters. In the absence of a more appropriate dataset, we compared our imprinting calls to the set of 55 DMRs found in mouse brain by Xie et al. [165] and did not find support for any of our novel complex imprinted genes and gene clusters. However, we think these genes are strong candidates for true liver imprinted genes and a validation of these imprinting calls by targeted bisulphite sequencing and allele-specific PCR is planned.

4.2.2 Approximately 8% of genes have differential isoform usage between C57BL/6J and CAST/EiJ

To allow a complete characterisation of differential isoform usage between C57BL/6J and CAST/EiJ, we restricted the analysis to the set of genes with two and only two expressed isoforms. Of this set we considered the 2073 genes for which: 1) at least one of the isoforms is well estimated (SE < 0.044) in at least three out of six samples in F0_{C57BL/6J} and in F0_{CAST/EiJ} and 2) the gene expression estimate in at least one of the 12 F0 mice is >= 10. To find genes where there is differential isoform usage between the parental strains independently of whether the gene is differentially expressed we compared the proportions of expression of one of the isoforms over the total gene expression.

For this classification we used a model based on the Beta-Binomial distribution. For each gene with two isoforms, where isoform 1 is chosen randomly, we introduce the following notation:

 $x_i = \text{expression of isoform 1 in the } i \text{th C57BL/6J F0 mouse}$

 n_i^x = total gene expression in the *i*th C57BL/6J F0 mouse y_i =expression of isoform 1 in the *i*th CAST/EiJ F0 mouse n_i^y = total gene expression in the *i*th CAST/EiJ F0 mouse

Here i takes values between 1 and 6 (F0 samples). We make the following distributional assumptions:

$$x_i \sim Bin(n_i^x, p_i^x)$$
 and $y_i \sim Bin(n_i^y, p_i^y)$

And we impose the following prior distributions upon p^x and p^y :

$$p_i^x \sim Be(\alpha^x, \beta^x)$$
 and $p_i^y \sim Be(\alpha^y, \beta^y)$

We can then model the null hypothesis of no differential isoform usage by restricting the hyperparameters α and β such that the prior distributions are the same $(\alpha^x = \alpha^y \text{ and } \beta^x = \beta^y)$. In the alternative hypothesis of differential isoform usage the F0_{C57BL/6J} and F0_{CAST/EiJ} data may come from two different distributions $(\alpha^x, \alpha^y, \beta^x, \beta^y)$ are independent parameters). To choose between the two hypotheses, the maximum likelihood of each model was calculated and the likelihood ratio between them was obtained. The two models are nested so we performed a likelihood ratio test by comparing the likelihood ratio to the quantiles of a chi-squared distribution with two degrees of freedom.

At a false discovery rate cut-off of 10% and requiring a change of at least 5% in isoform ratio, we found 161 (8%) genes with differential isoform usage between the strains (Figure 4.4A). Genes with differential isoform usage were enriched for the "ABC transporters" and "complement and coagulation cascades" KEGG pathways at a FDR of 22% (Table 4.3). In particular, ABC transporters play an important role in lipid trafficking and are involved in the regulation of cholesterol metabolism [167]. Of the three ABC transporters and two additional genes thought to be involved in cholesterol regulation and which we identified as having differential isoform usage, four had isoforms that coded for different annotated proteins (Abca8b, Abcc10, Hpn and Apob). Whether the protein isoforms are functionally different needs to

be further investigated. However, differential usage of these protein coding isoforms could be implicated in previously reported differences between cholesterol levels in the C57BL/6J and CAST/EiJ strains [1].

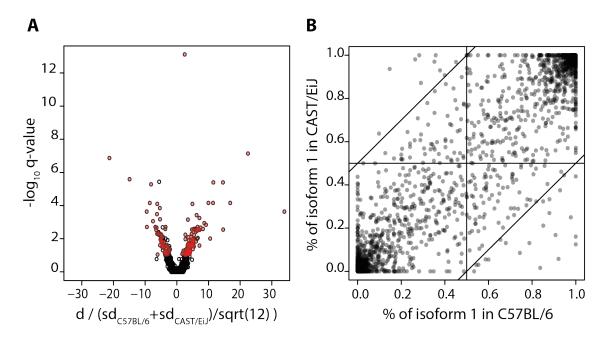


Figure 4.4: Differential isoform usage between strains. (A) A normalised distance (t-statistic) between the proportion of the major isoform in the C57BL/6 strain and the proportion of the same isoform in CAST/EiJ is plotted against the significance level of the difference. Genes with differential isoform usage are coloured red. (B) The proportion of randomly chosen isoform 1 over total gene expression (isoform 1 + isoform 2) is plotted for each strain. For a few genes the major isoform switches by more than 50%.

Differences in isoform usage were continuously distributed amongst the set of 161 genes. For 26% of these genes the isoform usage switched from one isoform to the other between strains (Figure 4.4B). The set of genes for which isoform usage changed by more than 50% is significantly enriched for targets of the following microRNAs in the UTR regions exclusive to only one of the isoforms in each gene: miR-92a (Arhgef17 and Ibtk) and miR-711 (Slc25a35 and 1700001C19Rik, Table 4.3). Although intriguing, this requires further investigation.

Table 4.3: GO enrichments for genes with differential isoform usage (obtained with GeneTrail [7]).

KEGG pathway	expected	observed	FDR (BH)	enrichment
Complement and coagula-	1.01	5	0.0405	up
tion cascades				
ABC transporters	0.92	3	0.2151	up
miRNA	expected	observed	FDR (BH)	enrichment
mmu-miR-711	0.03	2	0.0006	up
mmu-miR-92a	0.09	2	0.0034	up

4.2.3 Most isoform regulatory divergence is caused by regulatory variants in *trans*

To examine the regulatory divergence of isoform usage we used the set of autosomal genes with two isoforms expressed in both the F0s and the F1s that: 1) were not imprinted in either the gene level or the isoform level analysis, 2) had heterozygous loci in both isoforms, 3) had an expression level >= 10 in at least one sample in the F0s and 4) had an expression level >= 5 in at least one of the F1s. For each gene we used an extension of the statistical framework described in the previous section to classify it by its pattern of regulatory divergence in cis, in trans or in cis+trans. Genes for which there is a differential usage of isoforms between the parents are classified as either cis or trans regulated if the ratio of allele specific proportion is the same as the ratio of the proportions in the parents, or if the proportions are equal between the alleles, respectively (Figure 4.5). Genes with divergent isoform usage that do not fit the above are classified as regulated by variants both in cis and in trans. Briefly, for each gene with two isoforms, where isoform 1 is chosen randomly and (x_i, n_i^x) and (y_i, n_i^y) are as defined in the previous section, we introduce the following notation for the F1s:

 $z_j = \text{expression of isoform 1 from the C57BL/6J}$ allele of the jth F1 mouse $n_j^z = \text{total gene expression of the C57BL/6J}$ allele of the jth F1 mouse $w_j = \text{expression of isoform 1 from the CAST/EiJ}$ allele of the jth F1 mouse $n_j^w = \text{total gene expression of the CAST/EiJ}$ allele of the jth F1 mouse

Subsequently, we make similar distributional assumptions as for the F0s:

$$z_j \sim Bin(n_j^z, p_j^z)$$
 and $w_j \sim Bin(n_i^w, p_j^w)$
 $p_j^z \sim Be(\alpha^z, \beta^z)$ and $p_j^w \sim Be(\alpha^w, \beta^w)$

To assign genes to each category we determined a p-value for alternative isoform usage between the parental strains and another p-value for alternative isoform usage between the alleles in the F1s with a chi-squared test as for the F0 data alone. Genes were classified as conserved if both p-values were greater or equal to 0.01, as cis if both were less than 0.01 and as trans if the p-value for differential isoform usage between the parental strains was less than 0.01 and the p-value for differential isoform usage between the alleles in the F1s was greater than 0.1. Genes that did not fall into any of the above categories were classified as cis+trans. Furthermore, we required a minimum change of 5% in the isoform ratio to classify genes as having divergent isoform usage.

Without thresholding by standard error (i.e. potentially including genes in which both isoforms are poorly estimated) we were able to classify 2662 genes. Of this set, the majority (2202, 93%) show evidence of being regulated in a conserved fashion. In stark contrast with the regulation of gene expression levels, for genes in which isoform usage has diverged between the strains, the largest class comprises genes that are regulated by variants purely in trans (98, 4%). The second largest class corresponds to genes regulated by a combination of variants in cis and variants in trans (51, 2%), while genes that are regulated by variants purely in cis amounts to only 19 (<1%). When applying the classification to subsets of genes in which at least one isoform is well estimated we observe that the frequency of genes in each regulatory class is robust to changing cut-offs on the standard errors (Figure 4.6). When we examined the set of genes classified as being regulated in trans among the set of 1249 genes with at least one isoform with SE < t₁ we observed a significant enrichment at a FDR of 10% of the following gene ontology categories: ABC transporters, cardiomyopathy and regulation of actin cytoskeleton. For both the set of genes regulated in trans and the set of genes regulated by variants both in cis and in trans we observed an enrichment for targets of a number of miRNAs

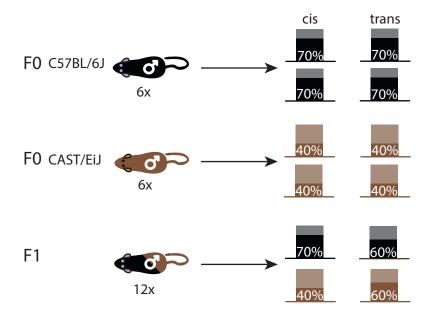


Figure 4.5: Example of a cis and trans effect for a gene with two isoforms. In the cis example isoform 1 accounts for 70% of gene expression in F0_{C57BL/6J}, while in F0_{CAST/EiJ} it accounts for 40% of the expression due to a variant in a regulatory region in cis to the gene, for example a variant in a splice site. In the F1 the isoform proportions of the parents are reproduced in the different alleles. In the trans example the change in isoform usage is due to a diffusible element, for example due to a changed splicing factor. In the F1 the isoform proportions may be similar or different to the parental proportions but are equal between the alleles.

(Tables 4.4 and 4.5), while the set of genes regulated in *cis* and the set of conserved genes were not significantly enriched for any pathways or *trans* acting factors.

Table 4.4: Gene set enrichment analysis for genes regulated in *trans* (obtained with GeneTrail [7]).

KEGG pathway	expected	observed	FDR (BH)	genes
ABC transporters	0.35	2	0.0943	Abca8b Abcc10
ARVC cardiomyopathy	0.35	2	0.0943	Itgb1 Atp2a2
Dilated cardiomyopathy	0.42	2	0.0943	Itgb1 Atp2a2
HCM cardiomyopathy	0.42	2	0.0943	Itgb1 Atp2a2
Regulation of actin cy-	1.46	4	0.0943	Pip4k2b Itgb1
toskeleton				Cyfip1 Ssh2
miRNA	expected	observed	FDR (BH)	enrichment
hsa-miR-525-3p	0.94	5	0.0473	Hpn Ascc2 Peci
				Trfr2 Spred2
mmu-miR-674	0.31	3	0.0473	Peci Ssh2 Sfxn4
mmu-miR-92a	0.88	5	0.0473	Rogdi Ddb1
				Arhgef17 Ibtk
				Ssh2
mmu-miR-339-5p	0.69	4	0.0516	Rogdi Cd74
				Sipa1l3 Zdhhc5
mmu-miR-340-3p	0.12	2	0.0516	Trfr2 Zfp691

4.3 Discussion

To investigate the divergence of isoform usage in mammals we tested the relative contribution of regulatory variants acting only in *cis*, only in *trans* and both in *cis* and in *trans* between mouse subspecies using an F1 hybrid system. For this we relied on allele specific isoform level expression estimates, which we obtained by aligning RNA-sequencing reads to annotated cDNA sequences and using a probabilistic model to deconvolve expression levels. Exploiting data and annotation simultaneously improves the power of our analysis, however, previously unobserved genes or isoforms will be missed. One way to address this in the future is to complement our analysis by adding isoform sequences predicted by a transcript discovery

Table 4.5: Gene set enrichment analysis for genes regulated both in cis and in trans (obtained with GeneTrail [7]).

miRNA	expected	observed	FDR (BH)	enrichment
mmu-miR-744	0.28	3	0.0409	Agtpbp1 Sema4g
				Sh3bgrl3
hsa-miR-560	0.17	2	0.0706	Abtb1 Tmcc1
hsa-miR-602	0.14	2	0.0706	Trip10 Vkorc1l1
hsa-miR-525-5p	0.31	2	0.0752	Gramd3 Sec24c
hsa-miR-603	0.28	2	0.0752	Gsn Abtb1
mmu-miR-296-3p	0.37	2	0.0752	Abtb1 Vkorc1l1
mmu-miR-30a	0.73	3	0.0752	Gramd3 Tmcc1
				Vkorc1l1
mmu-miR-30b	0.84	3	0.0752	Gramd3 Tmcc1
				Vkorc1l1
mmu-miR-30c	0.82	3	0.0752	Gramd3 Tmcc1
				Vkorc1l1
mmu-miR-30e	0.73	3	0.0752	Gramd3 Tmcc1
				Vkorc1l1
mmu-miR-324-5p	0.28	2	0.0752	Abtb1 Tmcc1
mmu-miR-466f-5p	0.68	3	0.0752	Gstt3 Sema4g Gsn
mmu-miR-467e	0.34	2	0.0752	Tmcc1
				1110002N22Rik
mmu-miR-467d	0.42	2	0.0908	Agtpbp1 Tmcc1

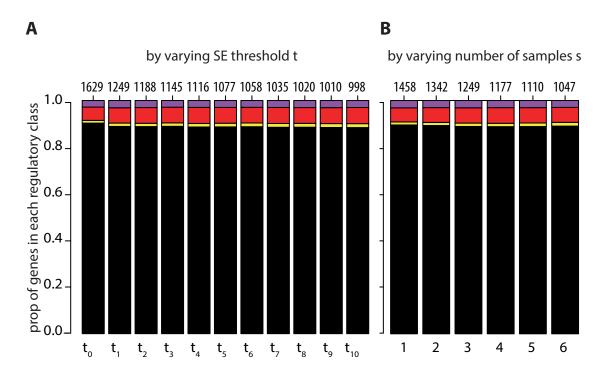


Figure 4.6: Classification of genes according to their pattern of isoform expression divergence. Genes for which isoform usage has not diverged between the two strains are classified as conserved (coloured black), while genes in which isoform usage has diverged are classified as cis (coloured yellow), trans (coloured red) or cis and trans (coloured purple). We used different subsets of genes to verify that the proportions allocated to each class are robust to changing the threshold on the standard errors. (A) Proportion of genes in the different classes for each subset of n genes (along the x-axis on top) with at least one isoform with SE below each threshold t ($t \in$ $\{t_0, t_1, ..., t_{10}\}\$ corresponding to the maximum SE amongst isoforms with $\{0, 1, ..., 10\}$ unique reads, respectively; along the x-axis bottom) in at least three out of six samples in $F0_{C57BL/6J}$ and in $F0_{CAST/EiJ}$, and in at least six out of 12 samples in F1_{C57BL/6J} and in F1_{CAST/EiJ}. (B) Proportion of genes in the different classes for each subset of n genes (along the x-axis on top) with at least one isoform with SE below threshold $t_1 = 0.044$ in at least s out of six samples in F0_{C57BL/6J} and in $F0_{CAST/EiJ}$, and in at least 2s out of 12 samples in $F1_{C57BL/6J}$ and in $F1_{CAST/EiJ}$ (along the x-axis bottom).

method to the reference transcript FASTA file and using it in the alignment and mapping steps of the MMSEQ workflow.

Because parent-of-origin effects are a confounding factor in our analysis we used initial and reciprocal crosses to identify and remove from the analysis imprinted genes. Within our imprinted set we identified a small number of novel loci (24) subject to complex imprinting patterns in which isoforms of the same gene and/or overlapping genes show opposite parent-of-origin effects. This set, if validated by an independent method, would significantly expand the number of loci previously known to have such patterns. We are currently planning this validation using allele-specific pyrosequencing and qRT-PCR experiments.

Our analysis of differences in isoform usage between the two strains using the F0s revealed that 8% of genes with two expressed isoforms had divergent isoform usage. This number is broadly consistent with a recent RNA-seq study which found that 6.5% to 28% of testis-expressed genes had alternative splice differences between at least one pair of *Mus musculus* subspecies [56], and with a study which found that 7% of genes expressed in liver undergo differential alternative splicing or have different transcription start or end sites between humans and chimpanzees [13]. The number of genes with differential isoform usage is smaller than the number of genes found to have differential gene expression, however its magnitude suggests that differences in isoform usage contribute to transcriptome divergence between mouse subspecies.

Using the full hybrid system we characterised the regulatory divergence for genes with two and only two expressed isoforms. We consider that this simplification is not likely to bias our results, however, our analysis method could be extended in the future to include all multi-isoform genes by using a Dirichlet-Multinomial model instead of the Beta-Binomial. Within the set of genes for which isoform usage has diverged between the strains we found that the majority was regulated by variants in trans, a large proportion was regulated by variants both in cis and trans, and a small proportion of genes was regulated only is cis. The proportions allocated to each regulatory class were very different from those found for the regulation of gene expression levels and suggest that the mechanisms regulating overall gene expression levels and isoform usage are under different evolutionary constraints.

One important challenge in understanding the regulation of splicing is that alternative isoform usage results from multiple, potentially independent, regulatory pathways. First, alternative isoforms may arise from alternative transcription start sites (TSSs) within the same or between different promoters. The latter is most likely achieved by differences in the regulation of the recruitment of the transcriptional machinery to each promoter. The regulatory mechanism of the former is not well understood but given that TSS selection occurs downstream of the recruitment of the transcriptional machinery, it is likely that it differs from the mechanism of selection between promoters [66]. Secondly, alternative isoform usage can arise from alternative splicing, which is in part regulated by a mechanism involving trans acting splicing factors binding to cis regulatory loci within the gene region. This mechanism is again likely to be different from the mechanisms regulating other alternative isoform producing events. Finally, alternative isoforms also arise from alternative polyadenylation site usage. The regulation of the choice of polyadenylation site is still not well understood, but it is thought to involve cis-acting sequences in the pre-mRNA and trans acting members of the polyadenylation processing machinery and RNA binding proteins. Given that different alternative splicing generating events are regulated by different mechanisms, each event might involve different proportions of cis and trans acting regulatory elements. The results presented in this chapter combined different mechanisms of differential isoform regulation which is potentially mis-leading.

To explore this further, we examined the proportion of genes in each regulatory class for the subset of genes with two and only two isoforms. When looking at our set of genes we found that the majority (54%) had at least one annotated alternative splicing event, a large proportion had an alternative first exon (40%), about a third had an alternative last exon and another third had an alternative TSS within the same promoter. However, most genes had a combination of event types (Figure 4.7) and separating genes by an exclusive event type reduced our sets to the order of low hundreds and less, which we deemed too small to reliably characterise regulation. Despite this limitation, one way in which the predominance of trans acting regulators in isoform usage regulation could be explained is by the extensive occurrence of alternative splicing events. The regulation of alternative splicing is thought to be significantly driven by cis-acting regulatory regions located in the gene's exons or introns. These sequences are under considerable more constraint than many of the cis-regulatory regions located in intergenic regions that control

overall gene expression levels. Hence, variants that act in *trans* might be a more likely explanation for divergent isoform usage.

In summary, our study provides the first unbiased characterisation of the regulation of alternative isoform usage in a mammalian system. It demonstrates that a small but significant number of genes have alternative isoform usage between two closely related mouse strains and that among this set, the majority are regulated by variants that have arisen in trans. This result contrasts with the high prevalence of regulation both in cis and in trans and exclusively in cis of gene expression levels. One likely explanation for this is that the cis-regulatory regions controlling alternative isoform production are under stronger sequence constraint. However, the pleiotropic arguments for the preferential accumulation of cis regulatory variants over time presented in the previous chapter may also be pertinent in this case and we do not exclude the possibility that the proportion of cis acting variants will increase with species divergence time. An informative extension of this work would be to characterise gene and isoform divergence between strains that have diverged at different times, which would allow a better understanding of the processes that underlie speciation.

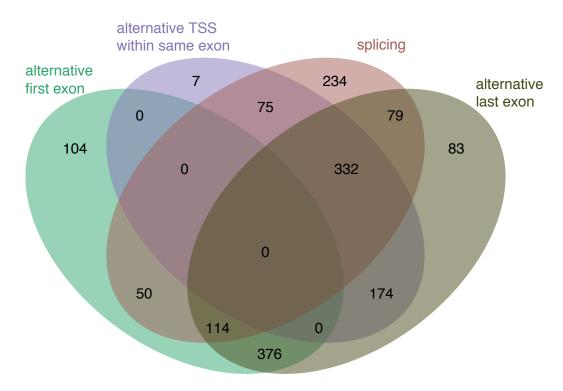


Figure 4.7: Number of genes with two and only two expressed isoforms by type of alternative isoform producing event.

Chapter 5

Concluding remarks

High-throughput sequencing of RNA (RNA-Seq) allows for the first time the simultaneous measurement of sequence and expression of RNAs and the analysis of these data requires novel bioinformatics approaches. In my work I have developed methods for the analysis of RNA-seq data and made contributions to the understanding of regulation of gene expression and splicing. First, I implemented a complete pipeline for data quality assessment, pre-processing and expression estimation of RNA-seq datasets. This pipeline was, sometimes with modifications, applied to most of my subsequent work. Second, I investigated the genome-wide evolution of gene expression in mammals by estimating the relative contribution of regulatory variants in cis or in trans to the divergence of gene expression in a mouse model. Instrumental for this work was the reliable estimation of allele-specific expression levels. For this, I have used an existing method for estimating gene and isoform level expression from RNA-seq data called MMSEQ and developed a methodology for applying it to the estimation of allele-specific expression. Using the estimates thus obtained, I observed that a large fraction of genes has divergent expression between the two mouse strains. Of these, a very small minority could be explained by variants acting purely in trans, while a big proportion was attributable to variants acting in cis. The majority of genes, however, were regulated by multiple regulatory variants acting in cis and in trans with opposing effects on gene expression. I propose that the most likely explanation for this is the widespread occurrence of compensatory mutations in gene expression evolution. Finally, I used the same experimental system and methodology to study the evolution of isoform regulation. For this, I assessed the relative contribution of regulatory variants in cis or in trans to the divergence of isoform usage between the mouse strains. I found that isoform usage has diverged to a lesser extent than overall expression levels. The largest fraction of genes was regulated by variants acting in *trans*, a big proportion was attributable to multiple variants in *cis* and in *trans* and only a small minority of genes was regulated by variants purely in *cis*. These results suggest that the mechanisms regulating overall gene expression levels and isoform usage are under different evolutionary constraints.

The development of new technology is providing an increasingly detailed characterisation of the cell's transcriptome. In the last two chapters I have demonstrated how RNA-seq enables the elucidation of evolutionary mechanisms by providing the sensitivity necessary to measure allele-specific expression. Although RNA-seq is currently the most unbiased method for genome-wide measurement of gene expression, library preparation protocols still introduce considerable technical biases and expression is routinely obtained over many, possibly heterogeneous, cells. Moreover, the requirements to fragment the RNA or cDNA molecules and the ability to sequence only short reads precludes accurate identification of the full sequence of each transcript present in a sample. These are still limiting factors in our ability to progress from expression studies focused on overall expression levels averaged over many cells to studies focused on individual transcripts in single cells. Looking further into the future, the development of full length single molecule sequencing in a single cell promises to surpass many of these limitations, providing a more fine-grained understanding of the mechanisms governing gene expression.

Appendix A

Supplementary material for

Chapter 3

A.1 Experimental methods

The text in this experimental methods section is based on material provided by Ms. Sarah Leigh-Brown, who conducted all the experimental work. The text in A.1.1 and A.1.2 is based on material included in Sarah's Ph.D thesis submitted to the University of Cambridge in September 2011.

A.1.1 Animal housing and handling

All mice used in this study were housed and handled in accordance with the Animals (Scientific Procedures) Act 1986. Mice were housed and cared for in the Cambridge Research Institute Biological Resource Unit with a twelve hour light/dark cycle, and were provided with chow food from Lab Diet plus water ad libitum. Mice were sacrificed by cervical dislocation at 4-6 months of age, between the hours of 9:30am and 11:30am. The liver was then cut and the mouse perfused with PBS by injection into the heart. Subsequently, the liver was removed and the gall bladder and hepatic vein cut away. A sample of approximately 50mg-100mg was taken from a single liver

lobe and frozen on liquid nitrogen for storage at -80C until use.

A.1.2 Sequencing library preparation

For each liver sample, total RNA was extracted using the RNeasy Mini kit (Qiagen 74104) as per manufacturers instructions. RNA was checked for buffer contamination and approximate concentration on the Nanodrop spectrophotometer (Thermo scientific). Before further processing, each total RNA sample was treated to digest contaminating DNA. From each sample, polyadenylated mRNA was enriched from the total RNA using the PolyATract mRNA isolation system. Directional doublestranded cDNA was generated using the Superscript Double-Stranded cDNA Synthesis kit (Invitrogen), with Uracil substituted for Thymine in the second strand. 250ng of double-stranded cDNA was fragmented prior to library preparation by sonication in the Diagenode Bioruptor set on Hi for 5 minutes of 30 seconds on/off cycles, repeated twice; each sonicated cDNA sample was then treated to generate blunt ended double-stranded DNA. Following end repair, libraries were treated to add an overhanging Adenine nucleotide and Illumina paired-end (PE) adapters were ligated on both ends of each clone in the library. Strand-specificity was introduced by digesting the second strand of cDNA using a uracil-specific enzyme. Each library was subsequently amplified using PCR with Illuminas PE primers. Size selection was performed by gel electrophoresis and 200-300 base pair fragments were extracted from a 2% agarose gel. Finally, the quality of each library was tested prior to sequencing using the Agilent Bioanalyzer (Agilent). Libraries were sequenced on an Illumina GAIIx in the genomics core facility of the Cambridge Research Institute.

A.1.3 Pyrosequencing

Genes were randomly selected for validation, following exclusion of genes that showed evidence of imprinting and those that showed highly variable expression levels between biological replicates. Single nucleotide variants (SNVs) were identified using the UCSC genome browser, and forward, reverse, and sequencing primers were designed to target each SNV using PyroMark Assay Design software from Qiagen. Each set of primers was tested for specificity in silico using Blat and in the labo-

ratory using quantitative PCR and using pyrosequencing on BL6xCAST genomic DNA.

Pyrosequencing was performed on the Pyromark Q96 MD system, using the allele specific quantification program. First, total RNA was isolated from the liver of one initial F1 cross and one reciprocal F1 cross mouse, and double stranded cDNA was generated using the Superscript II double-stranded cDNA kit (Invitrogen). Three technical replicate PCR reactions were performed on each cDNA sample using one biotinylated and one non-biotinylated primer. PCR products were purified and enriched using streptavidin sepharose beads on the Pyromark vacuum prep workstation. Pyrosequencing was performed on the enriched PCR products using Pyromark Gold Q96 reagents and Pyromark MD software (Qiagen). The Pyromark software determined an allelic ratio for each of three technical replicates, and the average was determined from all six replicates of each genomic locus.

A.2 Supplementary Figures

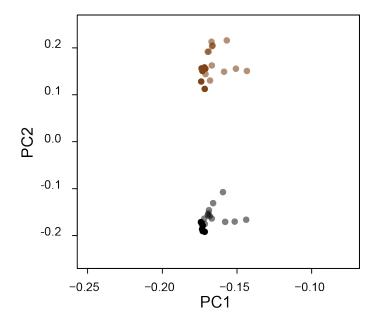


Figure A.1: Samples cluster by strain. Plot of the first two principal components for all 24 samples. Each F1 sample is represented once for each allele. All of the six C57BL/6J F0 samples cluster together (coloured black) and with the C57BL/6J allele of the 12 F1 samples (grey). All of the CAST/EiJ samples (brown) cluster together with the CAST/EiJ allele of the 12 F1 samples (light brown).

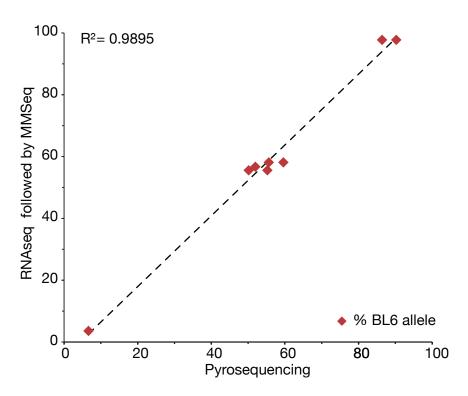


Figure A.2: Allelic Ratio measured by RNAseq and Pyrosequencing. Validation of allele-specific measurements made using RNA-seq. On the y-axis, a measure of allele specific expression (using the C57BL6/J allele as reference) determined from RNA-seq is plotted for five genes. On the x-axis, the corresponding measure of allele-specific expression determined from pyrosequencing is shown. For three out of five genes, pyrosequencing was performed at two SNPs.

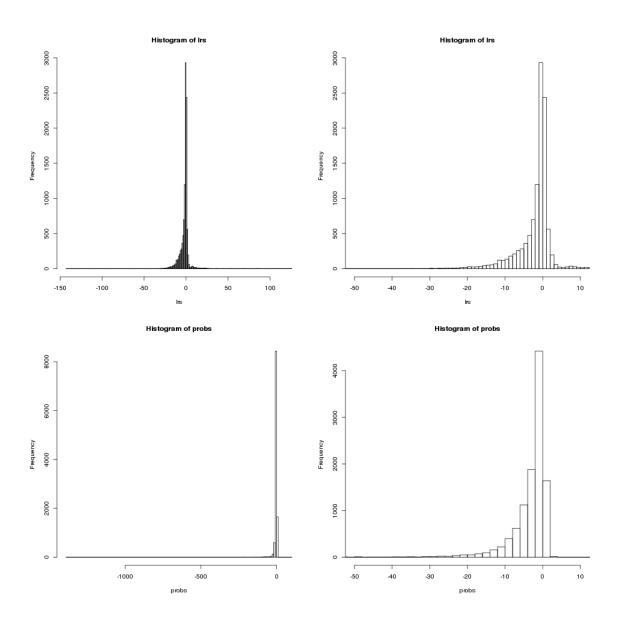


Figure A.3: Distribution of likelihood ratios for the test of imprinting. The distribution of likelihood ratios obtained from the real data is plotted in the top two panels, and the null distribution of likelihood ratios for the null hypothesis of no imprinting is plotted in the bottom two panels. In both cases the right hand plot shows a zoomed in version of the plot on the left.

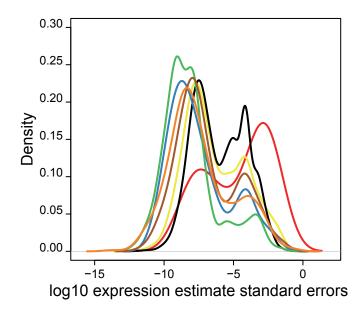


Figure A.4: Density of the standard errors of the gene allelic expression estimates obtained with MMSEQ in the F1s for each class (conserved - black, cis - yellow, trans - red, CIS+trans - blue, cis+TRANS - green, cis-TRANS - orange, CIS-trans brown). The standard errors are closely related to the number of unique reads mapping to each allele-gene and reflect the number of variants and the coverage over these.

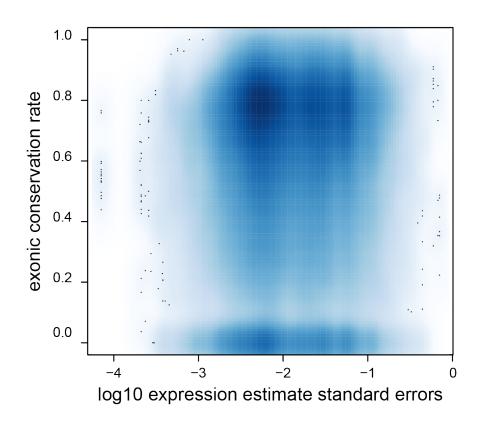


Figure A.5: No relationship between conservation score and standard error estimates. The standard errors of the allelic expression estimates obtained with MM-SEQ in the F1s are plotted against the exonic conservation rates. There is no relationship between the two.

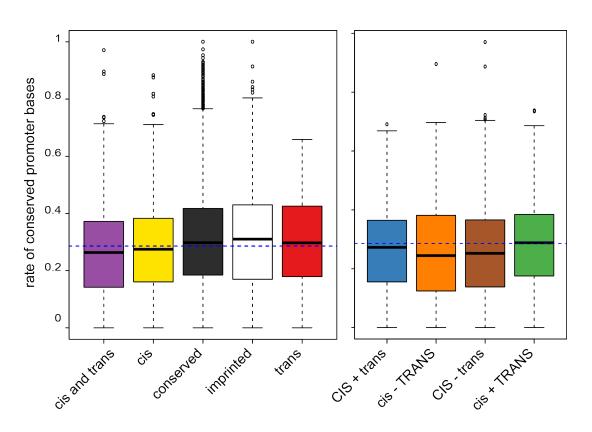


Figure A.6: Promoter sequence conservation rates for the different classes of regulatory divergence.

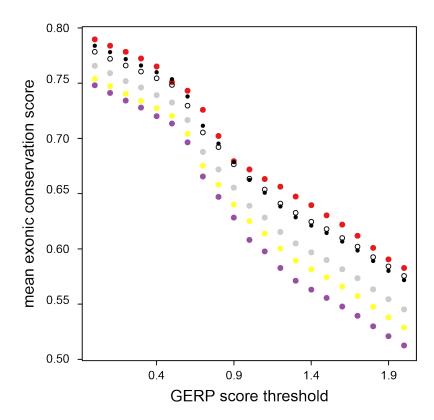


Figure A.7: The relative GERP scores of the different classes (conserved - black, *cis* - yellow, *trans* - red, imprinted - white, *cis* and *trans* - purple) are robust to changes in the threshold used to call a nucleotide as conserved.

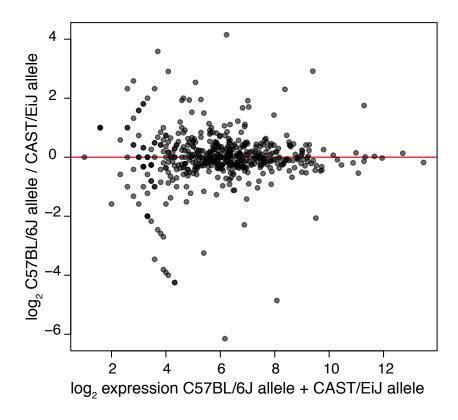


Figure A.8: Imprinting continuum. The \log_2 total expression across both alleles (x-axis) is plotted against the \log_2 fold change between the alleles (y-axis) for all imprinted genes in one of the F1i samples.

A.3 Supplementary Tables

A.3.1 Supplementary Table A.1

Table A.1: Table of samples used in the study with the number of raw and correctly aligned reads.

sampleID	Strain	${\bf number Reads}$	${\bf number Aligned}$
do876	C57BL/6J	30373020	16187363
do877	C57BL/6J	32907241	21150758
do878	C57BL/6J	32075256	20178289
do879	C57BL/6J	30192493	18658862
do922	C57BL/6J	33152941	19497103
do923	C57BL/6J	29979442	16681710
do883	CAST/EiJ	33511533	11729077
do884	CAST/EiJ	32950724	13764947
do920	CAST/EiJ	29951804	15804537
do924	CAST/EiJ	27222930	14309559
do925	CAST/EiJ	29485779	14417501
do926	CAST/EiJ	25918629	11282255
do931	CAST/EiJ	19732873	9876140
	reciprocal cross		
do880	CAST/EiJxC57BL/6J	33063510	11630078
do882	CAST/EiJxC57BL/6J	33454400	11002668
do919	CAST/EiJxC57BL/6J	31814198	11001313
do927	CAST/EiJxC57BL/6J	27973105	16389873
do928	CAST/EiJxC57BL/6J	29362228	16697260
do929	CAST/EiJxC57BL/6J	19967614	10732085
do930	CAST/EiJxC57BL/6J	24502787	12087333
	initial cross		
•			

do881	C57BL/6JxCAST/EiJ	32221296	10407915
do921	C57BL/6JxCAST/EiJ	32712218	14352188
do1087	C57BL/6JxCAST/EiJ	28333765	20518957
do1134	C57BL/6JxCAST/EiJ	44587843	19529138
do1135	C57BL/6JxCAST/EiJ	12353269	3428026
do1156	C57BL/6JxCAST/EiJ	12137349	3408161

A.3.2 Supplementary Table A.2

Table A.2: Overlap of the top 10% more highly variable genes in C57BL/6J and CAST/EiJ

geneID	geneName
ENSMUSG00000070394	$1810027\mathrm{O}10\mathrm{Rik}$
ENSMUSG00000029725	$2010007\mathrm{H}12\mathrm{Rik}$
ENSMUSG00000030587	2200002 D01 Rik
ENSMUSG00000062619	2310039 H08 Rik
ENSMUSG00000032712	$2810474\mathrm{O}19\mathrm{Rik}$
ENSMUSG00000060657	$4921513\mathrm{D}23\mathrm{Rik}$
ENSMUSG00000050459	$4930470\mathrm{H}14\mathrm{Rik}$
ENSMUSG00000048489	$8430408\mathrm{G}22\mathrm{Rik}$
ENSMUSG00000048249	$\rm A930001N09Rik$
ENSMUSG00000029482	Aacs
ENSMUSG00000047370	AC046145.1
ENSMUSG00000025936	AC101743.1
ENSMUSG00000058064	AC102377.2
ENSMUSG00000083396	AC107815.5
ENSMUSG00000078081	AC109220.1
ENSMUSG00000067736	AC116997.1
ENSMUSG00000081094	AC121131.3
ENSMUSG00000069367	AC121903.1
ENSMUSG00000045886	AC121926.1
ENSMUSG00000061833	AC122242.2
ENSMUSG00000080893	AC122339.3
ENSMUSG00000089238	AC123039.1
ENSMUSG00000085995	AC124977.2
ENSMUSG00000058603	AC129545.2

geneID	geneName
ENSMUSG00000074565	AC131780.1
ENSMUSG00000074564	AC131780.11
ENSMUSG00000074562	AC131780.2
ENSMUSG00000074561	AC131780.4
ENSMUSG00000087580	AC131780.5
ENSMUSG00000079719	AC131780.7
ENSMUSG00000074566	AC131780.8
ENSMUSG00000040323	AC133589.1
ENSMUSG00000088844	AC138229.1
ENSMUSG00000089895	AC138320.1
ENSMUSG00000067038	AC139040.1
ENSMUSG00000057036	AC139675.1
ENSMUSG00000083626	AC141643.2
ENSMUSG00000087778	AC147020.1
ENSMUSG00000073640	AC149589.2
ENSMUSG00000078300	AC150660.1
ENSMUSG00000043346	AC151288.1
ENSMUSG00000069196	AC154266.1
ENSMUSG00000079936	AC155937.1
ENSMUSG00000079360	AC158396.3
ENSMUSG00000022473	AC158787.2
ENSMUSG00000067547	AC158901.1
ENSMUSG00000084416	AC158958.3
ENSMUSG00000078103	AC161518.1
ENSMUSG00000074880	AC166937.1
ENSMUSG00000079329	AC174479.1
ENSMUSG00000021867	AC174479.4
ENSMUSG00000072676	AC175032.1
ENSMUSG00000060317	Acnat2

geneID	geneName
ENSMUSG00000021228	Acot3
ENSMUSG00000062825	Actg1
ENSMUSG00000020473	Aebp1
ENSMUSG00000069833	Ahnak
ENSMUSG00000019256	Ahr
ENSMUSG00000089876	AL603707.1
ENSMUSG00000079971	AL611985.1
ENSMUSG00000078250	AL669969.1
ENSMUSG00000090229	AL672231.1
ENSMUSG00000089691	AL732309.1
ENSMUSG00000074846	AL732330.1
ENSMUSG00000090094	AL805896.1
ENSMUSG00000060628	AL833805.2
ENSMUSG00000075014	AL837506.1
ENSMUSG00000075015	AL837506.2
ENSMUSG00000089526	AL928940.1
ENSMUSG00000089784	AL929562.1
ENSMUSG00000032786	Alas1
ENSMUSG00000035561	Aldh1b1
ENSMUSG00000013076	Amotl1
ENSMUSG00000072115	Ang
ENSMUSG00000002289	Angptl4
ENSMUSG00000034647	Ankrd12
ENSMUSG00000054702	Ap1s3
ENSMUSG00000032080	Apoa4
ENSMUSG00000040564	Apoc1
ENSMUSG00000074336	Apoc4
ENSMUSG00000035133	Arhgap5
ENSMUSG00000019947	Arid5b

geneID	geneName
ENSMUSG00000055116	Arntl
ENSMUSG00000074794	Arrdc3
ENSMUSG00000038539	Atf5
ENSMUSG00000034218	Atm
ENSMUSG00000031441	Atp11a
ENSMUSG00000003072	Atp5d
ENSMUSG00000016252	Atp5e
ENSMUSG00000050856	Atp5k
ENSMUSG00000038717	Atp5l
ENSMUSG00000028238	Atp6v0d2
ENSMUSG00000021738	Atxn7
ENSMUSG00000029787	Avl9
ENSMUSG00000018821	Avpi1
ENSMUSG00000041935	AW549877
ENSMUSG00000034780	B3galt1
ENSMUSG00000040225	Bat2l2
ENSMUSG00000026987	Baz2b
ENSMUSG00000002083	Bbc3
ENSMUSG00000053175	Bcl3
ENSMUSG00000022508	Bcl6
ENSMUSG00000030256	Bhlhe41
ENSMUSG00000067336	Bmpr2
ENSMUSG00000015943	Bola1
ENSMUSG00000047721	Bola2
ENSMUSG00000040481	Bptf
ENSMUSG00000090245	BX571735.1
ENSMUSG00000042460	C1galt1
ENSMUSG00000036887	C1qa
ENSMUSG00000015451	C4a

geneID	geneName
ENSMUSG00000029385	Ccng2
ENSMUSG00000002944	Cd36
ENSMUSG00000024610	Cd74
ENSMUSG00000028755	Cda
ENSMUSG00000023067	Cdkn1a
ENSMUSG00000056501	Cebpb
ENSMUSG00000061825	Ces2
ENSMUSG00000049422	Chchd10
ENSMUSG00000024843	Chka
ENSMUSG00000027577	Chrna4
ENSMUSG00000032578	Cish
ENSMUSG00000008153	Clstn3
ENSMUSG00000001506	Col1a1
ENSMUSG00000025981	Coq10b
ENSMUSG00000041729	Coro2b
ENSMUSG00000036751	Cox6b1
ENSMUSG00000031231	Cox7b
ENSMUSG00000020300	Cpeb4
ENSMUSG00000090134	CR974462.1
ENSMUSG00000023272	Creld2
ENSMUSG00000062382	CT009486.1
ENSMUSG00000045999	CT010467.3
ENSMUSG00000003555	Cyp17a1
ENSMUSG00000063415	Cyp26b1
ENSMUSG00000005547	Cyp2a5
ENSMUSG00000040660	Cyp2b9
ENSMUSG00000042248	Cyp2c37
ENSMUSG00000032808	Cyp2c38
ENSMUSG00000056035	Cyp3a11

geneID	geneName
ENSMUSG00000066072	Cyp4a10
ENSMUSG00000028715	Cyp4a14
ENSMUSG00000028240	Cyp7a1
ENSMUSG00000072680	D14Ertd449e
ENSMUSG00000055296	D730040F13Rik
ENSMUSG00000059824	Dbp
ENSMUSG00000001666	Ddt
ENSMUSG00000035967	Ddx26b
ENSMUSG00000069045	Ddx3y
ENSMUSG00000044748	Defb1
ENSMUSG00000030313	Dennd5b
ENSMUSG00000082691	Dynlt1-ps1
ENSMUSG00000046179	E2f8
ENSMUSG00000038418	Egr1
ENSMUSG00000042302	Ehbp1
ENSMUSG00000090264	Eif4ebp3
ENSMUSG00000038754	Elovl3
ENSMUSG00000041220	Elovl6
ENSMUSG00000028445	Enho
ENSMUSG00000040857	Erf
ENSMUSG00000061286	Exosc5
ENSMUSG00000006920	Ezh1
ENSMUSG00000042595	Fam199x
ENSMUSG00000025153	Fasn
ENSMUSG00000042423	Fbrs
ENSMUSG00000022788	Fgd4
ENSMUSG00000031594	Fgl1
ENSMUSG00000024222	Fkbp5
ENSMUSG00000061175	Fnip2

geneID	geneName
ENSMUSG00000040891	Foxa3
ENSMUSG00000038415	Foxq1
ENSMUSG00000070733	Fryl
ENSMUSG00000050708	Ftl1
ENSMUSG00000021453	Gadd45g
ENSMUSG00000028671	Gale
ENSMUSG00000052957	Gas1
ENSMUSG00000031821	Gins2
ENSMUSG00000029638	Glcci1
ENSMUSG00000078162	Gm10481
ENSMUSG00000078965	Gm10481
ENSMUSG00000074106	Gm10627
ENSMUSG00000038550	Gm129
ENSMUSG00000047822	Gm6484
ENSMUSG00000078903	Gm6710
ENSMUSG00000045472	Gm9798
ENSMUSG00000046721	Gm9811
ENSMUSG00000034837	Gnat1
ENSMUSG00000024978	Gpam
ENSMUSG00000045441	Gprin3
ENSMUSG00000031450	Grk1
ENSMUSG00000060803	Gstp1
ENSMUSG00000038155	Gstp2
ENSMUSG00000050440	Hamp
ENSMUSG00000056978	Hamp2
ENSMUSG00000069919	Hba-a1
ENSMUSG00000069917	Hba-a2
ENSMUSG00000073940	Hbb-b1
ENSMUSG00000052305	Hbb-b2

geneID	geneName
ENSMUSG00000038664	Herc1
ENSMUSG00000007836	Hnrnpa0
ENSMUSG00000031722	Нр
ENSMUSG00000007872	Id3
ENSMUSG00000020429	Igfbp1
ENSMUSG00000039323	Igfbp2
ENSMUSG00000026185	Igfbp5
ENSMUSG00000066232	Ipo7
ENSMUSG00000032293	Ireb2
ENSMUSG00000038894	Irs2
ENSMUSG00000052837	Junb
ENSMUSG00000071076	Jund
ENSMUSG00000006740	Kif5b
ENSMUSG00000062901	Klhl24
ENSMUSG00000023043	Krt18
ENSMUSG00000035202	Lars2
ENSMUSG00000039704	Lmbrd2
ENSMUSG00000036957	Lrfn3
ENSMUSG00000037095	Lrg1
ENSMUSG00000001870	Ltbp1
ENSMUSG00000028670	Lypla2
ENSMUSG00000033902	Mapkbp1
ENSMUSG00000025409	Mbd6
ENSMUSG00000032418	Me1
ENSMUSG00000021268	Meg3
ENSMUSG00000059149	Mfsd4
ENSMUSG00000033943	Mga
ENSMUSG00000008035	Mid1ip1
ENSMUSG00000035621	Midn

geneID	geneName
ENSMUSG00000027820	Mme
ENSMUSG00000088272	mmu-mir-2133-2
ENSMUSG00000087974	mmu-mir-2143-3
ENSMUSG00000076258	mmu-mir-689-2
ENSMUSG00000020000	Moxd1
ENSMUSG00000010406	Mrpl52
ENSMUSG00000063011	Msln
ENSMUSG00000031765	Mt1
ENSMUSG00000029009	Mthfr
ENSMUSG00000089873	Mup13
ENSMUSG00000073830	Mup14
ENSMUSG00000073832	Mup15
ENSMUSG00000078675	Mup16
ENSMUSG00000078673	Mup19
ENSMUSG00000041333	Mup4
ENSMUSG00000058523	Mup5
ENSMUSG00000078687	Mup8
ENSMUSG00000022346	Myc
ENSMUSG00000020900	Myh10
ENSMUSG00000034427	Myo15b
ENSMUSG00000025402	Nab2
ENSMUSG00000029478	Ncor2
ENSMUSG00000002379	Ndufa11
ENSMUSG00000022820	Ndufb4
ENSMUSG00000020716	Nf1
ENSMUSG00000056749	Nfil3
ENSMUSG00000001911	Nfix
ENSMUSG00000042419	Nfkbil1
ENSMUSG00000031773	Nlrc5

geneID	geneName
ENSMUSG00000026077	Npas2
ENSMUSG00000037583	Nr0b2
ENSMUSG00000005893	Nr2c2
ENSMUSG00000002393	Nr2f6
ENSMUSG00000023034	Nr4a1
ENSMUSG00000055254	Ntrk2
ENSMUSG00000043013	Onecut1
ENSMUSG00000045991	Onecut2
ENSMUSG00000020189	Osbpl8
ENSMUSG00000064225	Paqr9
ENSMUSG00000038967	Pdk2
ENSMUSG00000020893	Per1
ENSMUSG00000028957	Per3
ENSMUSG00000026773	Pfkfb3
ENSMUSG00000020205	Phlda1
ENSMUSG00000030660	Pik3c2a
ENSMUSG00000043760	Pkhd1
ENSMUSG00000087141	Plcxd2
ENSMUSG00000002831	Plin4
ENSMUSG00000028680	Plk3
ENSMUSG00000017754	Pltp
ENSMUSG00000041653	Pnpla3
ENSMUSG00000039771	Polr2j
ENSMUSG00000038489	Polr2l
ENSMUSG00000022383	Ppara
ENSMUSG00000000440	Pparg
ENSMUSG00000046794	Ppp1r3b
ENSMUSG00000067279	Ppp1r3c
ENSMUSG00000027346	Prei4

geneID	geneName
ENSMUSG00000010175	Prox1
ENSMUSG00000020415	Pttg1
ENSMUSG00000020594	Pum2
ENSMUSG00000047824	Pygo2
ENSMUSG00000049404	Rarres1
ENSMUSG00000040423	Rc3h1
ENSMUSG00000054031	Rdh18
ENSMUSG00000035504	Reep6
ENSMUSG00000036120	Rfxank
ENSMUSG00000026475	Rgs16
ENSMUSG00000059810	Rgs3
ENSMUSG00000002233	Rhoc
ENSMUSG00000050310	Rictor
ENSMUSG00000033107	Rnf125
ENSMUSG00000089739	RP23-118A2.10
ENSMUSG00000081485	RP23-136K12.6
ENSMUSG00000082697	RP23-139C9.1
ENSMUSG00000078154	RP23-14F5.5
ENSMUSG00000066477	RP23-157H17.2
ENSMUSG00000048949	RP23-181M13.5
ENSMUSG00000042938	RP23-185F7.4
ENSMUSG00000075391	RP23-186B18.4
ENSMUSG00000043770	RP23-191F22.11
ENSMUSG00000087262	RP23-22L6.2
ENSMUSG00000087299	RP23-233B9.5
ENSMUSG00000081471	RP23-272G10.2
ENSMUSG00000081205	RP23-273C23.1
ENSMUSG00000090221	RP23-294G7.3
ENSMUSG00000085091	RP23-295E4.2

geneID	geneName
ENSMUSG00000083594	RP23-298M2.10
ENSMUSG00000080888	RP23-330D3.2
ENSMUSG00000090136	RP23-356D13.4
ENSMUSG00000046840	RP23-36P22.4
ENSMUSG00000086231	RP23-386I18.2
ENSMUSG00000087306	RP23-396K15.2
ENSMUSG00000060989	RP23-425K3.1
ENSMUSG00000085001	RP23-438L23.2
ENSMUSG00000081448	RP23-451D4.10
ENSMUSG00000086922	RP23-459L15.3
ENSMUSG00000083696	RP23-465A17.2
ENSMUSG00000086320	RP23-99G21.3
ENSMUSG00000079224	RP24-114M8.2
ENSMUSG00000089940	RP24-163G22.1
ENSMUSG00000064193	RP24-364O14.1
ENSMUSG00000083087	RP24-371A24.1
ENSMUSG00000072940	RP24-417N21.2
ENSMUSG00000089855	RP24-69E21.3
ENSMUSG00000038900	Rpl12
ENSMUSG00000045128	Rpl18a
ENSMUSG00000058546	Rpl23a
ENSMUSG00000060938	Rpl26
ENSMUSG00000063316	Rpl27
ENSMUSG00000030432	Rpl28
ENSMUSG00000062997	Rpl35
ENSMUSG00000057863	Rpl36
ENSMUSG00000046330	Rpl37a
ENSMUSG00000007892	Rplp1
ENSMUSG00000025508	Rplp2

geneID	geneName
ENSMUSG00000052146	Rps10
ENSMUSG00000061983	Rps12
ENSMUSG00000069972	Rps13
ENSMUSG00000037563	Rps16
ENSMUSG00000028234	Rps20
ENSMUSG00000025362	Rps26
ENSMUSG00000020460	Rps27a
ENSMUSG00000074115	Saa1
ENSMUSG00000057465	Saa2
ENSMUSG00000042978	Sbk1
ENSMUSG00000046229	Scand1
ENSMUSG00000022032	Scara5
ENSMUSG00000037071	Scd1
ENSMUSG00000029597	Sds
ENSMUSG00000029596	Sdsl
ENSMUSG00000041567	Serpina12
ENSMUSG00000031271	Serpina7
ENSMUSG00000044734	Serpinb1a
ENSMUSG00000020211	Sf3a2
ENSMUSG00000024042	Sik1
ENSMUSG00000019935	Slc17a8
ENSMUSG00000026819	Slc25a25
ENSMUSG00000022003	Slc25a30
ENSMUSG00000024131	Slc3a1
ENSMUSG00000081534	Slc48a1
ENSMUSG00000030237	Slco1a4
ENSMUSG00000017002	Slpi
ENSMUSG00000044349	Snhg11
ENSMUSG00000065637	SNORA14

geneID	geneName
ENSMUSG00000084708	SNORA48
ENSMUSG00000084744	SNORA48
ENSMUSG00000064382	SNORA63
ENSMUSG00000089417	snoU90
ENSMUSG00000072941	Sod3
ENSMUSG00000022091	Sorbs3
ENSMUSG00000024427	Spry4
ENSMUSG00000020538	Srebf1
ENSMUSG00000006442	Srm
ENSMUSG00000021020	Srp54a
ENSMUSG00000071640	Stxbp3b
ENSMUSG00000000739	Sult5a1
ENSMUSG00000063450	Syne2
ENSMUSG00000053580	Tanc2
ENSMUSG00000020167	Tcf3
ENSMUSG00000022389	Tef
ENSMUSG00000020219	Timm13
ENSMUSG00000034917	Tjp3
ENSMUSG00000028132	Tmem56
ENSMUSG00000036676	Tmtc3
ENSMUSG00000022791	Tnk2
ENSMUSG00000033327	Tnxb
ENSMUSG00000028998	Tomm7
ENSMUSG00000048707	Tprn
ENSMUSG00000031431	Tsc22d3
ENSMUSG00000025511	Tspan4
ENSMUSG00000039438	Ttc36
ENSMUSG00000043091	Tuba1c
ENSMUSG00000026202	Tuba4a

geneID	geneName
ENSMUSG00000058672	Tubb2a
ENSMUSG00000008348	Ubc
ENSMUSG00000033685	Ucp2
ENSMUSG00000042985	Upk3b
ENSMUSG00000026839	Upp2
ENSMUSG00000020163	Uqcr
ENSMUSG00000063882	Uqcrh
ENSMUSG00000071528	Usmg5
ENSMUSG00000032010	Usp2
ENSMUSG00000056342	Usp34
ENSMUSG00000065145	Vault
ENSMUSG00000037440	Vnn1
ENSMUSG00000037646	Vps13b
ENSMUSG00000035284	Vps13c
ENSMUSG00000017677	Wsb1
ENSMUSG00000057836	Xlr3a
ENSMUSG00000079845	Xlr4a
ENSMUSG00000064945	Y_RNA
ENSMUSG00000047412	Zbtb44
ENSMUSG00000000552	Zfp385a
ENSMUSG00000047036	Zfp445
ENSMUSG00000073060	Zxda

A.3.3 Supplementary Table A.3

Table A.3: Table of genes with Parent-of-Origin effects. The average expression level of each gene for the C56BL/6J or CAST/EiJ alleles (B or C) in the initial cross and reciprocal cross ($F1_i$ and $F1_r$) are given. Genes are either maternally expressed (M) or paternally expressed (P).

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
0610011L14Rik	2	35.83	25.17	50.17	67	P
0910001L09Rik	5	447	518.17	582.17	498	M
1110004E09Rik	16	51.5	39.17	40.83	80.83	P
1110004F10Rik	7	153.67	106.17	117.67	157.83	P
1110007A13Rik	7	26.17	42.67	46.33	37.67	M
1110021J02Rik	17	22.17	7.83	13.17	20.83	P
1600014C10Rik	7	236.33	218	430.5	527	P
1700003E16Rik	6	3.67	1.67	5.17	9.5	P
2310021P13Rik	14	39.67	31.67	62.17	74.5	P
2510039O18Rik	4	52.67	66.5	129.33	105.83	M
2610036L11Rik	10	15.5	6	4.33	8	P
2810004N23Rik	8	93	63.5	74.17	88.5	P
2900092E17Rik	7	32.17	29.67	24.67	35.67	P
4933403F05Rik	18	45.33	50.17	61.83	56.5	M
4933439F18Rik	11	36.83	39.83	55	46.17	M
5430411K18Rik	18	11.67	14.5	22	18	M
5730419I09Rik	6	3.67	9.17	11.17	6.33	M
9130019O22Rik	7	4.33	2.17	3.33	5.5	P
A830010M20Rik	5	28.17	9	24	42.67	P
Aak1	6	3.83	1.17	5.67	6.5	P
Abcf3	16	100.5	85.17	107.67	133	P

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Abhd5	9	49	55.33	70	53.33	M
Abi2	1	1.5	3.83	3.17	2.17	M
Abr	11	2.17	4.67	5.5	2.67	M
AC079443.1	6	7.33	3.67	10.5	13	P
AC087780.9	1	2.17	1	1.67	3.5	P
AC087801.10	1	2	3.83	8.83	7.33	M
AC101915.1	1	0	3.17	5.33	1.17	M
AC102103.1	15	0	5.17	2.17	1	M
AC114905.1	1	9.33	7.83	14.67	18.83	P
AC115896.3	1	0	1.83	2.17	0	M
AC116677.2	3	6.5	7.67	10.33	2.83	M
AC120378.1	7	8.17	5.5	3	5.5	P
AC133646.1	18	1.67	5.83	6.83	2	M
AC135240.1	5	68.17	87	124.33	109.17	M
AC135567.1	16	9.5	6.17	7.83	16.67	P
AC137950.1	15	5	3.33	4.17	6.83	P
AC152395.1	15	2.5	0.67	2.67	5.5	P
AC152453.1	10	6.17	0.83	2	5	P
AC163646.1	14	9.17	0.17	16.5	0.17	M
AC165252.1	16	5.67	1.67	6.83	13.17	P
AC165327.2	19	1.5	3.83	6.17	3	M
Actr10	12	123.67	103.33	90.83	105.67	P
Acvr1	2	15.67	19.83	34.67	26.5	M
Agps	2	10.17	4.33	6.17	10.17	P
Akap5	12	7	0.83	2.5	2.83	P
Aktip	8	42.67	27	33	36.67	P
AL607072.1	11	20.5	15.33	8.67	16.17	P
AL772271.1	2	2.17	4.83	10.17	4.17	M
AL805896.1	4	0.5	19.67	4.17	0	M

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Alg8	7	31	25.17	21.67	27	P
Alkbh6	7	54.33	36.67	55.5	65.33	P
Ambra1	2	31.83	38.17	58.5	35.33	M
Ampd2	3	125.83	103.83	186.83	205.83	P
Ankrd40	11	113.67	139.17	135.67	113.67	M
Ankrd49	9	14.33	5.83	7.33	11	P
Aoc2	11	4.83	3	1.17	9.67	P
Ap1s3	1	0.17	6	8.33	3.67	M
Ap3s1	18	162.67	69	72.33	92.33	P
Ap3s2	7	25.67	22.83	28.17	34.67	P
Arhgap26	18	111.83	57.5	102	135.5	P
Arhgef10	8	2	3.33	7.5	3.33	M
Arhgef7	8	30.67	32.83	49	37	M
Arid5b	10	5	14	20.83	18.83	M
Atg16l1	1	30.83	45	80.83	61.33	M
Atp6v1h	1	97.17	129.33	128.33	86.5	M
Atrnl1	19	11.67	19.17	23.33	19.5	M
Aup1	6	571.5	642.17	780	692	M
B230319C09Rik	6	1.5	4	2	1.5	M
Bak1	17	87.5	75	42.83	46.5	P
BC024139	15	25.5	22.83	28.17	35.33	P
BC024479	9	12.67	6	6.33	11.83	P
BC050254	5	0	17.33	35.17	49.5	M
Bcl7c	7	193.83	51.17	77.67	121.83	P
Becn1	11	154.33	141.33	227.33	260.17	P
Brp44l	17	1222.67	1218	1021.33	1127.83	P
C130022K22Rik	6	12.67	16.5	18.67	13.17	M
C2cd2l	9	76.67	79.67	139.5	114.17	M
Cables2	2	48.67	46.17	70.83	84	P

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Calcrl	2	6.83	4	4.17	7.5	Р
Caml	13	45.5	74	65.17	54.67	M
Cant1	11	44.33	52.17	88	72.5	M
Card6	15	17.67	11.33	15.67	20.33	P
Casp9	4	42.67	32.5	42.67	50.67	P
Cbfa2t2	2	7.67	9.67	15	10.17	M
Cbx6	15	2.33	8.33	8	5.17	M
Ccdc107	4	316	266.5	269.5	286.83	P
Ccdc141	2	15.83	15.83	12.83	21.17	P
Ccdc97	7	48.33	55.67	96	88.33	M
Ccnd2	6	3.33	0	0.83	4	P
Ccnd3	17	121.33	73.17	95.17	143.33	P
Cct6a	5	146.33	129	160.67	182.67	P
Cd151	7	160.33	144.17	186.83	218.5	P
Cd300lg	11	24.83	27.33	28.5	23.67	M
Cd320	17	16.83	5.33	18.33	22.67	P
Cd52	4	15.17	43.33	10	3	M
Cd84	1	1	6.83	2	2.17	M
Cdc123	2	119.33	151.5	145.83	124.17	M
Cdc16	8	62.83	50.83	56.33	66.5	P
Cdc37l1	19	35	38.5	40.33	32	M
Cdca4	12	4.67	7.83	9.17	6	M
Cdk20	13	11.67	13.83	23.5	14.17	M
Cdkn1c	7	2.33	2.33	10.33	0	M
Cenpa	5	11.5	12.83	19	10.5	M
Chmp5	4	141	179.67	138.83	126.67	M
Chmp7	14	83.5	65	104.83	131.67	P
Chpf	1	7.5	1.67	10.67	13.5	P
Chuk	19	237.67	205.83	225	238.33	P

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Cisd3	11	491.67	445.5	249.83	313.17	Р
Clec1b	6	29.5	12.83	8.5	13.67	P
Cno	5	9.17	13	70.33	59.5	M
Cnot1	8	47.17	73.83	83.5	72	M
Cog8	8	67	81.17	102.83	77.67	M
Col13a1	10	3.83	6.17	9.5	5.5	M
Commd5	15	68.17	53.5	63.83	110	P
Cops5	1	145	160.33	198.5	165.33	M
Cops7a	6	258.5	235.67	334.67	428	P
Coq3	4	41.83	51.83	44	38	M
Cox10	11	35.67	25.67	32.5	36.5	P
Cpsf3	12	64	81.5	89.83	78.67	M
Crebl2	6	77.83	66.17	86.17	97.33	P
Crem	18	58.33	61.83	62.67	51.17	M
Crip1	12	54.67	0	0	24.17	P
Csnk1g3	18	31	36.83	33.33	26.67	M
Csnk2a2	8	32.17	39.33	30	46.83	P
CT025701.1	9	0.83	1.5	3	1.33	M
Ctbs	3	9.5	20.17	15	12.33	M
Ctdsp2	10	87.33	90.67	126.33	111.83	M
Cugbp1	2	69.67	114.67	117	98.33	M
Cugbp2	2	20	11.5	8.33	11.67	P
Cul3	1	48.83	59.33	88.5	46.33	M
Cul9	17	6.33	4.67	13.67	18	P
Cyb561d1	3	10.33	6.83	9.83	16	P
Cyb5r3	15	1874	227.17	555.67	1176.17	P
Cyp26b1	6	0	3.33	2.17	0	M
Cyp2c29	19	7483.83	7261	3326.67	3810.67	P
Cyp2c50	19	3645.33	3296.17	2155.33	2192.67	P

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Cyp2j9	4	26.83	29.17	32.83	19	M
D0H4S114	18	40.5	31	50.33	56.33	P
D10627	8	4.83	0.17	0.67	2.83	P
D930015E06Rik	3	20.67	23.17	40	28.83	M
Daam1	12	26.67	31	40.5	34	M
Dcaf10	4	14.67	31.67	29.67	24.67	M
Ddah2	17	6.83	1.33	10.17	18.5	P
Ddx24	12	71.5	63.83	70.83	86.33	P
Dennd2a	6	4.33	6.17	6.17	3.33	M
Dexi	16	97.83	105.67	178	138.83	M
Dgka	10	22	22.17	15.33	41.17	P
Dimt1	13	6.33	11	13.67	6.83	M
Dnaja2	8	215.83	238.33	237.83	203	M
Dnajc10	2	31.33	27.17	27.83	41.83	P
Dnhd1	7	4.33	20.83	20.33	11.67	M
Dolpp1	2	66.17	68.83	88.83	67.83	M
Dpp3	19	116.5	126.83	213	168	M
Dpp7	2	52.17	67.5	77	59.5	M
Dusp16	6	39.5	36	43.5	52.67	P
Dusp22	13	26.83	63.17	46.17	27.33	M
Dync1h1	12	37.17	33.17	61.17	68	P
Ebpl	14	667.67	628.17	609.83	735.5	P
Ecm1	3	509.67	538.33	535	454.33	M
Edc4	8	29.5	14.17	45.83	65.67	P
Eef1e1	13	37.67	49	29.17	47	P
Eefsec	6	75	56.17	111.67	121.17	P
Eif4e2	1	167.17	184.5	173	130.33	M
Entpd6	2	16.17	18.33	33.33	22.33	M
Epcam	17	6.33	1.5	1.83	5.5	P

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Erbb2ip	13	34.17	39.67	37.5	33.17	M
Eri2	7	7.17	9.83	8.67	5.5	M
Esam	9	24.83	25.17	28.5	18.5	M
Etaa1	11	6	3.33	4	5.83	P
Exoc3l	8	7.5	4.33	15.83	18.83	P
Exosc4	15	39.33	173.5	264.83	206.67	M
Fam103a1	7	97	139.67	89.33	81.83	M
Fam108c	7	158.83	181.17	245.67	210.5	M
Fam149b	14	37.33	45.67	60.17	52.67	M
Fam59a	18	12.5	8.83	16.67	24	P
Fam83f	15	2.5	4.17	8.5	6.17	M
Fancc	13	8.67	10.5	16.83	11.5	M
Farsb	1	103.83	82.67	78	109.5	P
Fbxl4	4	31	39.5	39.17	35.5	M
Fbxo28	1	10.67	6.67	10	12.17	P
Fied	5	19.17	17.67	21.67	29.67	P
Foxp4	17	52.33	62.67	102.33	93.17	M
Frmd4a	2	3.67	4.17	8.67	4	M
Fyn	10	5.5	18.33	11.17	8.83	M
Glul	1	2668.17	2458.33	2465.5	2731.17	P
Gm10392	11	3.83	1	2.17	4.17	P
Gm10397	14	33.67	46.5	22	23.5	M
Gm9754	5	1.33	4	7.33	4.17	M
Gmppa	1	178	166	189.5	251.17	P
Gna13	11	26.5	23.83	32.33	43.33	P
Gnas	2	975.17	1361.67	1913.67	1541.67	M
Gnpat	8	85.17	93.33	125.5	106.83	M
Gnptg	17	77.5	58.83	65.83	81.5	P
Golga2	2	36.67	61.67	93	57	M

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Golph3l	3	2.83	16	7.83	4.33	M
Gpatch2	1	13.67	15.5	23	14.67	M
Gpn2	4	51.67	38	91	103	P
Grap	11	4.33	7.17	10.83	6.83	M
Grb10	11	0.83	5.83	7	3.33	M
Grpel1	5	145.83	257.5	201.5	178.17	M
H13	2	245.67	941.83	1036.17	284.5	M
Hamp2	7	5147.83	3628.83	1571.83	3802	P
Harbi1	2	28.33	38.5	40.5	30.5	M
Haus2	2	12.83	15.67	15.67	11.5	M
Haus8	8	10.5	10.83	12.67	6.17	M
Hbb-b2	7	1322.83	1424	485.5	453.17	M
Hcn3	3	42.33	46.67	72.67	154.17	P
Heatr2	5	23.33	19.67	24.67	36	P
Herc4	10	45.83	41.17	19.33	56.83	P
Hes1	16	45.33	40.33	31.17	54.5	P
Hmox2	16	141.17	58.17	103.5	136.17	P
Hsf2bp	17	7.5	1.5	7.17	6.67	P
Iars	13	38.5	42.67	60.17	47.17	M
Ict1	11	147.67	208.17	293.83	220.67	M
Iffo1	6	19.83	14.83	29.33	37.67	P
Ifi203	1	5.17	11.5	8.83	5.5	M
Ifit1	19	5.33	3.5	3.83	5.33	P
Igf2r	17	0.17	49.33	82.17	0.67	M
Impact	18	13.83	0.83	3	15.67	P
Ipp	4	23.83	14	21.5	25.33	P
Irs2	8	1.83	3.83	10.83	8.33	M
Itpkb	1	5.33	7.67	12.67	8.5	M
Jarid2	13	7.17	11.67	14.33	12.17	M

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Kenc3	7	7.5	12.67	18.33	16.5	M
Kctd10	5	16.17	26.5	38	31.17	M
Kif1b	4	69.33	57	82.17	87.33	P
Klhl6	16	1.67	1.17	2.33	4.67	P
Kras	6	32.5	43.83	38.5	34.17	M
Krtcap3	5	13.5	4.83	13.5	20.83	P
17Rn6	7	42	78.17	57.33	47.17	M
Laptm4a	12	584.17	2.17	290	250.33	P
Larp4b	13	22.17	29.33	35.83	29.83	M
Lats1	10	4.67	7.17	12.83	9.83	M
Lgals3	14	10	12	11	2.33	M
Lime1	2	5.67	20.67	44.83	18.17	M
Limk2	11	12.5	18.33	20.17	17.83	M
Lin7c	2	38.33	44.17	40.83	34.5	M
Lman2	13	515	458	668.17	904.83	P
Lmo4	3	50	44.83	39	66.83	P
Lrp3	7	49.83	40.67	91.5	106.17	P
Lrrc58	16	60.67	44.17	26.67	58.33	P
Lrwd1	5	16	18.83	32	20	M
Lsm3	6	69.17	24.5	14.33	26.17	P
Lsp1	7	13	4.17	3.33	7	P
Lst1	17	26.67	11.83	2.33	10.67	P
Maff	15	3.5	12.17	12.67	10.83	M
Map2k2	10	490.67	381.5	886.83	962.17	P
Map2k5	9	40	47.5	60.67	52.33	M
Map3k1	13	9.67	7.5	9.67	12.83	P
Map3k14	11	5.5	4.17	7.33	10.67	P
Map4k5	12	21	14.17	17.17	24	P
Mare	11	49.83	66	102.5	86.67	M

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Mars	10	124.17	183.17	232.83	198.33	M
Mas1	17	1.33	12.5	10.83	2.67	M
Masp1	16	177	204.83	223.5	206.17	M
Mbl1	14	580.5	575.83	603	639.33	P
Mcts2	2	47.17	0	0.67	38.17	P
Mdm4	1	5	9.67	14.17	9.17	M
Me1	9	542.17	551.33	545.83	463.67	M
Med28	5	102.83	74	78	86.83	P
Med31	11	11.17	4.17	2	9.33	P
Meg3	12	3.67	364.5	378.67	6.67	M
Mett11d1	14	32.5	42.33	49	33.5	M
Mettl2	11	18.17	17	22.33	32.33	P
Mfsd3	15	50.83	68.17	64.17	102.83	P
Mfsd4	1	16	22.5	45.67	28.67	M
Mgat2	12	20	70.33	52	29.33	M
Mmp23	4	14.5	3.33	2.5	4.83	P
Mogs	6	120	101.33	160.33	186.5	P
Mpdu1	11	387.5	296.67	374.67	399.83	P
Mpv17l2	8	151	57.67	122	161	P
Mrpl41	2	206	184	152.33	181	P
Mrps15	4	122	216.33	164.17	119.17	M
Msi2	11	19	24.67	24.83	20.83	M
Mt2	8	0	10.5	2.67	1.33	M
Myo1e	9	52.17	48.67	57.17	66.83	P
N6amt2	14	38.17	42.17	40.17	23.17	M
Naa15	3	28.83	19.83	18.83	26.5	P
Nadsyn1	7	95.83	93.67	95.33	125.17	P
Napg	18	29.83	26.33	24.33	32.67	P
Nat15	16	222.17	300.67	336.17	313.83	M

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Nat5	2	29.67	57.5	41.5	44	M
Ncald	15	15.17	19.17	24.33	14.33	M
Nceh1	3	33.33	15.67	27.17	34.17	P
Ndn	7	2.83	0	0	4.83	P
Ndufb6	4	682.33	818.5	654	547.83	M
Ndufs1	1	175.5	189.33	226.17	213.83	M
Neu1	17	105.5	87.5	137	184.5	P
Nfe2l1	11	190.5	167.17	195.67	244.5	P
Nip7	8	43.5	57.67	44.33	25.83	M
Nmnat1	4	51.5	45	53.17	64	P
Nmral1	16	38	19	20.17	38.33	P
Nr3c1	18	66.33	58.83	80.17	86.33	P
Nr4a1	15	0.33	2.83	4	0	M
Nsfl1c	2	247.17	169.33	221	318.5	P
Nt5c2	19	33.83	29	30.5	43	P
Nuak2	1	34.17	25.5	32.33	36.33	P
Nup153	13	15.17	11.17	16.17	18.67	P
Nupl1	14	14.5	3.33	8.67	13.83	P
Nxt1	2	40	40.67	32.17	47.5	P
Obfc2a	1	10.5	16	18.83	8.67	M
Oxa11	14	169.5	174.17	266.17	216.5	M
P4ha2	11	24.5	14.83	21.5	25.83	P
Paip2	18	250.67	272.5	254.83	229.33	M
Pard6b	2	4.17	9	15.5	9.67	M
Pcgf6	19	22.33	16.83	16.83	24.33	P
Pcif1	2	66.33	72.67	147.17	59	M
Pcolce	5	40.33	29.83	38	42.83	P
Pcsk4	10	86.67	82.83	162.67	103.83	M
Pdcd2	17	59.33	100.17	105.17	41.83	M

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Pde4d	13	6.67	5.17	3	6.17	Р
Peli2	14	11.5	14.5	20	11.83	M
Pgap3	11	6.33	3.33	7.67	9.83	P
Pgrmc2	3	140	143.33	200.17	165	M
Phactr4	4	37	45.17	46.67	41.33	M
Phc2	4	55.83	61.67	93	75.17	M
Phf1	17	48.17	54.67	71	64.83	M
Pigp	16	42.17	60.5	36.83	27.5	M
Pik3c3	18	23.33	29.33	34.67	29.67	M
Pik3cb	9	19.17	7.83	13.83	16.67	P
Pik3cd	4	5.67	0.83	3.83	5.33	P
Pisd-ps2	17	29.83	37.5	53.67	48.5	M
Pitpnm2	5	42.17	46.67	116.67	87.17	M
Pkdcc	17	39.17	46.67	112	72.5	M
Plekhg6	6	17.67	19.33	51.67	36	M
Pold4	19	134.33	91.17	83.33	99	P
Poldip2	11	277	296.67	337.5	304	M
Polm	11	10.83	15.83	21.67	19.83	M
Polr1b	2	17.33	34.67	43.67	35	M
Polr3g	13	10.5	11.33	22.33	4.83	M
Ppic	18	10.83	3.33	2.5	5.5	P
Ppm1a	12	111.5	106.83	103.33	230.17	P
Ppm1m	9	21.67	24.83	52.5	11.33	M
Ppp1r15a	7	22	30.17	41	27.5	M
Ppp3ca	3	29.67	34	36.17	24	M
Ppp4r2	6	21	47.33	39.83	26.5	M
Prdm11	2	3.67	7.5	9.17	4.5	M
Prepl	17	33.83	36.33	39.5	26.67	M
Prickle4	17	20.67	12.67	15.5	19.5	P

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Prkacb	3	39.67	53.5	55.17	42.33	M
Prmt2	10	0.67	4	4	3.17	M
Prpf40b	15	30.5	50	76	51.83	M
Psmb5	14	478.83	463	739.83	561.17	M
Psmd11	11	231.17	354.83	331.67	258.83	M
Psmd12	11	226.83	204.33	191.5	235.33	P
Ptbp2	3	4.17	17.33	13.67	10	M
Ptdss2	7	28.5	22.17	39.83	46.17	P
Ptpn18	1	5.83	2	2	4.67	P
Ptpn23	9	23	34	50.17	38.5	M
Ptprj	2	16.67	57.67	70	30.33	M
Pum1	4	45.33	37.5	48.67	59.67	P
Pvrl3	16	68	56.17	58.33	65	P
Rab11fip3	17	18	27	39.83	33.5	M
Rab2a	4	256	238.17	237.83	250.33	P
Rab33b	3	8.83	13.5	14.83	13	M
Rab4b	7	78.17	89.33	139.83	113.83	M
Rabac1	7	229	335	572.67	390.33	M
Rad23a	8	166.17	91.5	116.33	188.33	P
Ralgapa2	2	14.17	16	23.83	17.67	M
Raly	2	115.33	88.33	166	200.67	P
Ranbp1	16	183.17	122.67	115.83	158.67	P
Ranbp2	10	27.33	15.67	27	30.33	P
Rapgef2	3	15	9.83	16.67	22	P
Rarg	15	5.83	19.83	11	9.33	M
Rasgef1b	5	11.17	8.67	10.83	27.5	P
Rasl2-9	7	1.67	1	4.17	7.17	P
Raver1	9	39.83	55.5	87.83	65.17	M
Rbbp6	7	37.17	45.5	43.5	37.83	M

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Rbm15	3	11.17	3.67	13.33	17.33	P
Rbm19	5	11.67	11.5	28	16.33	M
Rbm4	19	32	12.67	32.83	38.5	P
Rbm47	5	90.5	70.67	124	153.83	P
Rbp1	9	68.83	63.33	29.67	61.33	P
Rbpms	8	66	105.5	96	91.5	M
Rcc2	4	49	45	83	95.17	P
Rcor3	1	8.17	0.5	3.67	6.67	P
Recql5	11	22.67	33.17	48.33	44	M
Rell1	5	19.17	12.83	20.33	29.83	P
Rer1	4	377.83	381.5	425.67	219.33	M
Rest	5	8	12	12.5	10.67	M
Rhbdf1	11	14	20.5	29.67	20	M
Rhob	12	28.67	20.33	143.17	175.67	P
Rnf126	10	64.5	116.17	210.67	167.83	M
Rnf168	16	15.5	4.5	7.5	11.67	P
Rnf34	5	13.17	21.5	20.67	17.5	M
Rnf5	17	348.33	404.67	496.33	394	M
Rnf7	9	146	36.67	117.67	183	P
Rom1	19	5.83	2.83	3.67	17.67	P
RP23-128L22.2	13	3.83	1	2	4.67	P
RP23-129P10.1	6	6.17	2.5	6	7.83	P
RP23-223C17.2	2	0.33	2.17	2.5	1.17	M
RP23-340E1.2	9	25.17	35.67	37	16	M
RP23-44L6.2	2	17.83	31.83	26	17.83	M
RP23-84C12.13	11	0.67	2	7.33	2.17	M
RP24-252K15.1	1	68.5	78	64.33	52	M
Rpl7a	2	1874.33	1637.17	1566.17	1723	P
Rpp40	13	24	13.5	18	20.83	P

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Rps14	18	266.17	405.67	536.83	372.5	M
Rps15a	7	555.5	787.33	438.83	335.33	M
Rps16	7	191.5	351.17	384.67	278.67	M
Rps6kb1	11	25	32	30.67	25.17	M
Rsad1	11	15.67	11.33	24.67	32.33	P
Rtn4rl1	11	21.67	15	18.83	22.33	P
Ruvbl2	7	30.67	35.67	59.83	49.33	M
S1pr1	3	131.17	120.5	145.33	156.17	P
Saa3	7	37	23.67	24.67	3.5	M
Samd8	14	27	23	24.17	30.33	P
Sat2	11	37	56.17	72	30.33	M
Scamp2	9	46.5	49.17	61.83	44.33	M
SCARNA13	12	26.83	1.83	4.17	6.33	P
Scepdh	1	2.67	6.83	5.67	3	M
Sco1	11	34.5	28.67	25.33	32.83	P
Sdad1	5	11.67	9.5	11.5	14.17	P
Sec11a	7	248.83	138.67	117.33	175	Р
Sec13	6	116.67	48	83.33	105.17	Р
Sec23ip	7	30.17	27.5	28.5	35.5	P
Sec31a	5	315.67	378	397.67	384.17	M
Sec61b	4	739.5	700	781	464.17	M
Selp	1	4.67	9.17	9.83	7.5	M
Sema3f	9	4.33	7.67	11	9.83	M
Sepx1	17	2897.33	2670.33	2352.83	2664.33	P
Serpina9	12	3.67	0	0	4.17	P
Serpind1	16	1427	1454.83	1472.67	1353.5	M
Serpinh1	7	20.33	31.83	33.5	21.5	M
Sfrs13a	4	59.17	27.5	24.67	49.17	P
Sfxn3	19	3.5	2.5	3	5	P

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Sgce	6	17.67	0.83	1.17	13.17	Р
Sgip1	4	5	2.17	0.67	5.17	P
Shfm1	6	568.83	620.83	582.17	512.83	M
Skp1a	11	619.67	996.17	625.67	573.67	M
Slc22a3	17	0.5	21	15.17	1	M
Slc25a36	9	3.83	0.83	1.33	3.67	P
Slc38a6	12	107.5	142	133.83	118.5	M
Slc39a14	14	189	203	297.33	263.5	M
Slu7	11	25.17	37	36.5	31.83	M
Smad7	18	19.17	17.17	29.83	39	P
Snf8	11	346.17	157.33	155.17	222.67	P
Snip1	4	15.5	33.67	31.17	26.5	M
SNORA26	12	19.17	0	1.33	5.33	P
SNORA32	9	0	3.33	3.33	0	M
SNORA74	14	3.33	15.17	9.17	15.17	M
Snrpb2	2	27.67	34.67	25.17	18.5	M
Snrpn	7	70.67	0	0.33	135.33	P
Snx4	16	46.5	47.17	63	48.67	M
Sp5	2	3.67	7.83	18	7	M
Spats2	15	6.5	7.17	14	8.17	M
Spcs2	7	146.33	186.67	160.5	115.33	M
Spef1	2	1.83	4.5	5	2.33	M
Spna2	2	69.17	95.83	149	127.5	M
Srpr	9	359.83	356.17	447.67	504	P
Ssbp1	6	119.5	108.67	71.5	91	P
Ssbp4	8	12.5	1.33	9.67	19.67	P
Stab1	14	64.33	82.83	94.5	76.17	M
Strap	6	132	123.17	151.33	175.33	P
Stt3a	9	193	201.17	204	182.83	M

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Stx6	1	9.5	13.33	29.67	26	M
Szt2	4	26.17	16.5	32.5	46.33	P
Tada1l	1	25.17	30.67	51.5	40.17	M
Taf4a	2	12.17	19	25.5	19.67	M
Tbc1d7	13	43.17	35.17	36.33	51.5	P
Tbx3	5	30.33	37.83	56.83	37.83	M
Tctex1d2	16	0.33	6.67	4.5	1.83	M
Tfpt	7	35.33	39.5	55.17	35.83	M
Tgs1	4	9.17	16.67	18.33	12.67	M
Thap3	4	40.83	27.17	49.67	71.83	P
Thap7	16	95.67	79.33	110.5	130.5	P
Thoc4	11	128.33	45.33	89.33	163.83	P
Tmco4	4	28.17	21.83	30.67	55.67	P
Tmem140	6	46.5	39.33	32.17	45	P
Tmem161b	13	11.5	17	14.67	9.5	M
Tmem184c	8	16.5	20.17	21.33	17.83	M
Tmem188	8	43.33	46.17	40.67	32.83	M
Tmem194	10	6.33	9.5	11.5	8.83	M
Tmem201	4	36.67	31.83	55.17	63.83	P
Tmem86a	7	19	28	27.5	25.5	M
Tnfaip1	11	45	53.17	53.5	45.83	M
Tnfrsf21	17	7.5	5.67	5.5	9.33	P
Tnpo3	6	38.83	52.83	54.5	43.5	M
Tnrc6a	7	33	13.5	26.67	32.33	P
Tox4	14	36	44.33	52.17	43.83	M
Trappc1	11	118.67	96.17	70.67	78.33	P
Trim13	14	14.17	10.67	7.17	10.83	P
Trim39	17	15.67	22.17	29.67	12.5	M
Trmt61a	12	5.83	10.83	25.83	15	M

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Trnt1	6	40.17	32.83	28.17	34.17	Р
Trp53bp2	1	16.83	26	28.67	23	M
Trp53i11	2	20.83	16.67	16	19.83	M
Trp53inp2	2	333.33	321.5	330.5	353.83	P
Tsen34	7	82	97.83	188.17	101.67	M
Ttc14	3	21.33	15.17	14.33	21.33	P
Ttyh3	5	13.67	10.83	17.33	23.17	P
Twf2	9	8.33	4	5	13.67	P
Tyw1	5	36.17	30.83	58.83	68.5	P
U11	4	0	7.33	4.83	3.67	M
U2af1	17	237.67	401	345.33	198.5	M
Uba3	6	57.33	65	62.5	50	M
Uba7	9	5.17	10.83	17.5	8.17	M
Ube2e1	14	124.17	162.5	111.67	87	M
Ube2e3	2	78.33	36.33	49.33	64.33	P
Ube2g1	11	52.67	38.17	35.33	61.17	P
Ube2k	5	209.83	142.17	145.17	175.67	P
Ucp2	7	31.5	32.83	66.5	46.33	M
Ufsp1	5	11	10.67	11	22.5	P
Unc13b	4	5.83	7	16	9.17	M
Uqcrfs1	13	758	704.67	794	834	P
Usp14	18	60.17	107.5	76.33	67.5	M
Usp20	2	8.67	10.67	22.5	15.5	M
Usp36	11	24.17	19.33	42.17	46.5	P
Uvrag	7	33.33	26	39.83	49	P
Vamp4	1	16.67	23.5	28.33	20.83	M
Vim	2	40.5	58.17	56.83	39.33	M
Vps13c	9	6.67	7.83	15.67	10.83	M
Vwce	19	59.67	71.33	117.33	103	M

gene name	chr	$F1_iB$	$F1_iC$	$F1_rB$	$F1_rC$	expressed
Wasl	6	80.67	65.83	63.17	73.5	P
Wdr35	12	1.5	4	6.33	3.33	M
Wdr81	11	36.67	40.67	99.33	73.5	M
Wfdc2	2	14	19.17	24.83	18.67	M
Zbtb12	17	1	11.5	16.83	12.5	M
Zbtb16	9	11.67	16.5	7.33	5.33	M
Zbtb4	11	8.5	10.5	23.67	17.67	M
Zdhhc3	9	57	46.83	65.5	72.67	P
Zfhx2	14	3.5	7.83	10.83	8.33	M
Zfp113	5	5.5	9	7.33	5.33	M
Zfp13	17	0.17	3.33	3.33	2.5	M
Zfp143	7	7.17	14.83	11.5	9.17	M
Zfp235	7	1.67	4.17	8	5.83	M
Zfp509	5	4.67	7.17	15.33	9.5	M
Zfp69	4	3.5	2.17	3.17	6.33	P
Zfp706	15	247.17	221.33	237.17	313.83	P
Zfp760	17	5.67	3.67	3.17	4.83	P
Zfp846	9	3.5	4.33	6.33	2	M
Zkscan5	5	19.5	26.83	37.5	28.83	M
Znrf3	11	5.33	7.83	12.5	8.17	M
Zrsr1	11	29	1.67	2.5	26.83	P

A.3.4 Supplementary Table A.4

Table A.4: GO enrichments for genes regulated in cis (obtained with GeneTrail [7]).

GO term	expected	observed	FDR (BH)	enrichment
nucleus	339.83	261	4E-05	down
gene expression	223.73	158	4E-05	down
cellular macromolecule metabolic process	345.34	269	4E-05	down
nucleic acid metabolic process	218.35	154	4E-05	down
RNA metabolic process	128.46	79	5E-05	down
transcription regulator activity	69.56	33	5E-05	down
transcription	146.46	96	8E-05	down
${\it regulation of transcription, DNA-dependent}$	74.21	38	8E-05	down
regulation of nucleobase, nucleoside, nu-	156.26	104	8E-05	down
cleotide and nucleic acid metabolic process				
RNA biosynthetic process	79.84	42	8E-05	down
nucleoplasm part	30.37	8	8E-05	down
regulation of nitrogen compound metabolic	157.48	105	8E-05	down
process				
regulation of primary metabolic process	188.10	131	8E-05	down
transcription, DNA-dependent	79.35	42	8E-05	down
nuclear part	80.46	43	9E-05	down
regulation of transcription	140.83	92	1E-04	down
nucleic acid binding	178.06	124	0.0001	down
regulation of macromolecule biosynthetic pro-	154.67	104	0.0001	down
cess				
regulation of macromolecule metabolic pro-	179.53	126	0.0001	down
cess				
regulation of RNA metabolic process	75.803	41	0.0002	down
100 and 101 of 101 movement process	.0.000		0.0002	201111

GO term	expected	observed	FDR (BH)	enrichment
regulation of biosynthetic process	160.67	111	0.0002	down
regulation of gene expression	159.32	110	0.0002	down
regulation of cellular biosynthetic process	159.08	110	0.0002	down
macromolecule metabolic process	377.18	309	0.0002	down
cellular macromolecule biosynthetic process	199.73	146	0.0003	down
nucleobase, nucleoside, nucleotide and nucleic	258.51	200	0.0004	down
acid metabolic process				
macromolecule biosynthetic process	202.06	149	0.0004	down
nuclear lumen	47.88	22	0.0006	down
regulation of metabolic process	207.08	155	0.0006	down
transcription from RNA polymerase II pro-	47.02	22	0.0009	down
moter				
nucleoplasm	35.02	14	0.0013	down
DNA binding	111.19	74	0.0016	down
organelle part	208.30	159	0.0016	down
intracellular	758.39	695	0.0017	down
regulation of cellular metabolic process	194.96	148	0.0022	down
regulation of transcription from RNA poly-	43.72	21	0.0025	down
merase II promoter				
intracellular part	741.25	680	0.0031	down
primary metabolic process	473.31	412	0.0033	down
intracellular organelle part	204.14	158	0.0038	down
protein binding	369.71	313	0.0042	down
transcription factor complex	15.31	3	0.0044	down
positive regulation of metabolic process	58.29	33	0.0044	down
positive regulation of macromolecule	53.03	29	0.0044	down
metabolic process				
organelle lumen	59.52	34	0.0044	down
sequence-specific DNA binding	28.29	11	0.0044	down

GO term	expected	observed	FDR (BH)	enrichment
intracellular organelle lumen	59.15	34	0.0050	down
membrane-bounded organelle	584.26	524	0.0050	down
intracellular membrane-bounded organelle	583.40	524	0.0061	down
transcription activator activity	19.96	6	0.0061	down
positive regulation of nucleobase, nucleoside,	40.29	20	0.0061	down
nucleotide and nucleic acid metabolic process				
positive regulation of nitrogen compound	41.64	21	0.0061	down
metabolic process				
macromolecular complex	180.51	139	0.0066	down
membrane-enclosed lumen	61.96	37	0.0071	down
transferase activity, transferring acyl groups	16.29	4	0.0074	down
RNA splicing	19.59	6	0.0074	down
cellular nitrogen compound metabolic process	277.49	229	0.0076	down
organelle	636.79	579	0.0076	down
positive regulation of gene expression	39.55	20	0.0084	down
positive regulation of macromolecule biosyn-	42.13	22	0.0085	down
thetic process				
intracellular organelle	635.08	578	0.0085	down
cellular process	699.12	643	0.0087	down
transcription factor activity	37.84	19	0.0095	down
transferase activity, transferring acyl groups	15.80	4	0.0095	down
other than amino-acyl groups				
positive regulation of biosynthetic process	44.33	24	0.0100	down
post-translational protein modification	86.33	58	0.0100	down
positive regulation of cellular metabolic pro-	54.49	32	0.0103	down
cess				
acyltransferase activity	15.55	4	0.0110	down
negative regulation of RNA metabolic process	23.39	9	0.0113	down

GO term	expected	observed	FDR (BH)	enrichment
negative regulation of transcription, DNA-	23.27	9	0.0122	down
dependent				
positive regulation of cellular biosynthetic pro-	43.72	24	0.0130	down
cess				
nitrogen compound metabolic process	283.62	239	0.0190	down
positive regulation of transcription	37.72	20	0.0190	down
protein modification process	100.66	72	0.0194	down
cellular metabolic process	471.84	421	0.0215	down
regulation of biological process	351.58	305	0.0252	down
in utero embryonic development	22.04	9	0.0255	down
chordate embryonic development	30.37	15	0.0262	down
negative regulation of gene expression	32.70	17	0.0315	down
biological regulation	379.14	333	0.0326	down
negative regulation of nitrogen compound	31.23	16	0.0326	down
metabolic process				
regulation of cellular process	330.89	287	0.0349	down
mRNA processing	25.59	12	0.0358	down
embryonic development ending in birth or egg	30.86	16	0.0386	down
hatching				
chromatin organization	26.70	13	0.0409	down
chromosome organization	30.74	16	0.0409	down
negative regulation of nucleobase, nucleoside,	30.61	16	0.0430	down
nucleotide and nucleic acid metabolic process				
negative regulation of transcription	28.90	15	0.0497	down
Metabolic pathways	97.76	133	0.0015	up
oxidoreductase activity	53.27	87	0.0002	up
cellular aromatic compound metabolic process	11.39	27	0.0009	up
oxidation reduction	51.80	82	0.0009	up
locomotory behavior	10.65	24	0.0046	up

GO term	expected	observed	FDR (BH)	enrichment
coenzyme binding	16.04	31	0.0084	up
cofactor binding	21.92	38	0.0153	up
carboxy-lyase activity	2.57	9	0.0157	up
mitochondrion	123.81	156	0.0277	up
T cell apoptosis	0.61	4	0.0315	up
FAD binding	6.37	15	0.0322	up
catalytic activity	379.50	426	0.0348	up
behavior	19.59	33	0.0455	up
electron carrier activity	7.96	17	0.0455	up
oxidoreductase activity, acting on CH-OH	10.04	20	0.0466	up
group of donors				
cellular nitrogen compound biosynthetic pro-	26.70	42	0.0468	up
cess				
allantoin metabolic process	0.37	3	0.0478	up
regulation of prostaglandin biosynthetic pro-	0.37	3	0.0478	up
cess				
positive regulation of prostaglandin biosyn-	0.37	3	0.0478	up
thetic process				

A.3.5 Supplementary Table A.5

Table A.5: Significance of the pairwise t-tests between the conservation scores of the different categories (Bonferroni adjusted).

	padj
cons vs cis	7.02E-94
cons vs trans	0.570691058455201
cons vs imprinted	1
cis vs trans	9.67E-07
cis vs imprinted	7.93E-40
trans vs imprinted	1
CIS-trans vs cis-TRANS	1.43E-21
CIS-trans vs CIS+trans	3.86E-08
CIS-trans vs cis+TRANS	0.492183408272862
cis-TRANS vs CIS+trans	0.0300376116560015
cis-TRANS vs cis+TRANS	1.64E-18
CIS+trans vs cis+TRANS	6.76E-09

Appendix B

Supplementary material for Chapter 4

B.1 Supplementary Figures

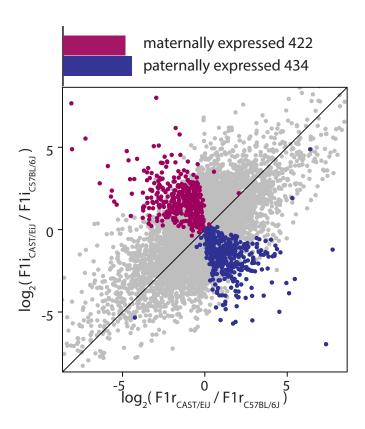


Figure B.1: Imprinted transcripts. Similar numbers of transcripts were found to be expressed from the maternal allele (422 transcripts, coloured pink) and from the paternal allele (434 genes, coloured blue). The average \log_2 expression fold change between the two alleles in F1r and between the two alleles in F1i are plotted on the x and y-axis, respectively.

B.2 Supplementary Tables

B.2.1 Supplementary Table B.1

Table B.1: List of genes known to be imprinting in mouse tissues compiled from a number of sources. Columns "known exp allele" and "exp allele" contain the imprinting calls in the literature and our imprinting calls, respectively.

gene	chr	biotype	known exp allele	tissue	exp allele	ref
Airn	17	processed transcript	paternal	liver	paternal	[51]
Ampd3	7	protein coding	not defined	not defined	not exp in liver	[28]
Asb4	6	protein coding	not defined	not defined	not exp in liver	[28]
Ascl2	7	protein coding	maternal	liver	not exp in liver	[51]
Blcap	2	protein coding	not defined	not defined	not imprinted	[28]
Calcr	6	protein coding	not defined	not defined	not exp in liver	[28]
Cd81	7	protein coding	not defined	not defined	not imprinted	[28]
Cdkn1c	7	protein coding	maternal	liver	maternal	[51]
Copg2	6	protein coding	not defined	not defined	not imprinted	[28]
Dcn	10	protein coding	not defined	not defined	not imprinted	[28]
Ddc	11	protein coding	not defined	not defined	not imprinted	[28]
Dio3	12	protein coding	not defined	not defined	not exp in liver	[28]
Dlk1	12	protein coding	not defined	not defined	not exp in liver	[28]
Dlx5	6	protein coding	not defined	not defined	not exp in liver	[28]
Gatm	2	protein coding	not defined	not defined	not imprinted	[28]
Gnas	2	protein coding	${\rm complex/maternal}$	not defined	not imprinted	[51]
Grb10	11	protein coding	not defined	not defined	not exp in liver	[28]
H13	2	protein coding	not defined	not defined	paternal	[28]
H19	7	processed transcript	maternal	liver	not exp in liver	[78]
Htr2a	14	protein coding	not defined	not defined	not exp in liver	[28]

gene	chr	biotype	known exp allele	tissue	exp allele	ref
Igf2	7	protein coding	paternal	liver	not exp in liver	[78]
Igf2as	7	processed transcript	not defined	not defined	not exp in liver	[28]
Igf2r	17	protein coding	maternal	liver	maternal	[51]
Impact	18	protein coding	paternal	liver	paternal	[78]
Ins1	19	protein coding	not defined	not defined	not exp in liver	[28]
Ins2	7	protein coding	not defined	not defined	not exp in liver	[28]
Kcnk9	15	protein coding	not defined	not defined	not exp in liver	[28]
Kcnq1	7	protein coding	not defined	not defined	not exp in liver	[78][51]
klf14	6	protein coding	not defined	not defined	not exp in liver	[28]
Magel2	7	protein coding	not defined	not defined	not exp in liver	[28]
Mcts2	2	protein coding	not defined	not defined	paternal	[28]
Meg3	12	processed transcript	maternal	liver	maternal	[78][51]
Mest	6	protein coding	not defined	not defined	not exp in liver	[28]
Mkrn1-ps1	5	pseudogene	not defined	not defined	not exp in liver	[28]
Nap1l4	7	protein coding	not defined	not defined	not imprinted	[28]
Nap1l5	6	protein coding	not defined	not defined	not exp in liver	[28]
Ndn	7	protein coding	paternal	liver	paternal	[78]
Nespas	2	processed transcript	paternal	liver	not exp in liver	[51]
Nnat	2	protein coding	not defined	not defined	not exp in liver	[28]
Pde4d	13	protein coding	not defined	not defined	not imprinted	[28]
Peg3	7	protein coding	paternal	liver	paternal	[78]
Phlda2	7	protein coding	maternal	liver	not exp in liver	[51]
Pon2	6	protein coding	not defined	not defined	not imprinted	[28]
Pon3	6	protein coding	not defined	not defined	not imprinted	[28]
Rasgrf1	9	protein coding	maternal	liver	not exp in liver	[78]
Rtl1	12	protein coding	paternal	liver	not exp in liver	[78]
Slc22a2	17	protein coding	maternal	liver	not exp in liver	[51]
Slc22a3	17	protein coding	maternal	liver	maternal	[51]
Snrpn	7	protein coding	paternal	liver	paternal	[78]

Appendix C

Full list of publications

- Goncalves, A., Leigh-Brown, S. (joint first), Thybert, D., Stefflova, K., Turro, E., Flicek,
 P., Brazma, A., Odom, D.T., Marioni, J.C. (2012). Compensatory cis-trans regulation
 dominates the evolution of mouse gene expression. Genome Research, in press.
- Wilson, M.D., Ballester, B. (joint first), Funnell, A., Schmidt, D., Mak, K.S., Gonzalez Porta, M., Stefflova, K., Faure, A., Lukk, M., Menon, S., Brown, G.D., McLaren, W.M., Goncalves, A., Kutter, C., Watt, S., Magan, N., Burdach, J., Lemaigre, F., Stowell, K., Odom, D.T., Flicek, P., Crossley, M., (2012). Deep conservation of combinatorial transcription factor binding reveals the missing regulator in Haemophilia B Leyden. *In preparation*.
- Kutter, C., Watt, S., Stefflova, K., Wilson, M.D., Goncalves, A., Ponting, C.P., Odom,
 D.T., Marques, A.C., (2012). Rapid Turnover of Long Noncoding RNAs and the Evolution of Gene Expression. *PLoS Genetics*, 8: e1002841.
- Schmidt, D., Schwalie, P.C., Wilson, M.D., Ballester, B., Goncalves, A., Kutter, C., Brown, GD., Marshall, A., Flicek, P., Odom, DT. (2012). Waves of Retrotransposon Expansion Remodel Genome Organization and CTCF Binding in Multiple Mammalian Lineages. Cell, 148, 335-348.
- Kutter, C. and Brown, G.D. (joint first), Goncalves, A., Wilson, M.D., Watt, S., Brazma,
 A., White, R.J., Odom, D.T. (2011). Pol III binding in six mammals shows conservation

among amino acid isotypes despite divergence among tRNA genes. $Nature\ Genetics,\ 43,\ 948-955.$

- Turro, E., Su, S., Goncalves, A., Coin, L.J.M., Richardson, S. and Lewin, A. (2011).
 Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads.
 Genome Biology, 12, R13-R13.
- Goncalves, A., Tikhonov, A., Brazma, A., Kapushesky, M. (2011). A pipeline for RNA-seq data processing and quality assessment. *Bioinformatics*, 27, 867-869.
- Lukk, M., Kapushesky, M., Nikkil, J., Parkinson, H., Goncalves, A., Huber, W., Ukkonen,
 E. and Brazma, A. (2010). A global map of human gene expression, *Nature Biotechnology*,
 28, 322-324.

References

- [1] Albers, J.J., Pitman, W., Wolfbauer, G., Cheung, M.C., Kennedy, H., Tu, A.Y., Marcovina, S.M. & Paigen, B. (1999). Relationship between phospholipid transfer protein activity and hdl level and size among inbred mouse strains. 1–7. 89
- [2] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. & Walter, P. (2007). Molecular biology of the cell. 5th edition. *Garland Science*. 4, 8
- [3] Allison, D.B., Cui, X., Page, G.P. & Sabripour, M. (2006). Microarray data analysis: from disarray to consolidation and consensus. *Nature Reviews Genetics*, **7**, 55–65. 22
- [4] Anders, S. (2012). Htseq: Analysing high-throughput sequencing data with python. 42
- [5] Anders, S. & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11, R106, 36, 40, 41, 56, 58
- [6] BABAK, T., DEVEALE, B., ARMOUR, C., RAYMOND, C., CLEARY, M.A., KOOY, D.V.D., JOHNSON, J.M. & LIM, L.P. (2008). Global survey of genomic imprinting by transcriptome sequencing. Curr Biol, 18, 1735–41. 74
- [7] BACKES, C., KELLER, A., KUENTZER, J., KNEISSL, B., COMTESSE, N., ELNAKADY, Y.A., MULLER, R., MEESE, E. & LENHOF, H.P. (2007). Genetrail—advanced gene set enrichment analysis. *Nucleic Acids Research*, 35, W186–W192. 59, 69, 90, 93, 94, 149
- [8] BAHN, J.H., LEE, J.H., LI, G., GREER, C., PENG, G. & XIAO, X. (2012). Accurate identification of a-to-i rna editing in human by transcriptome sequencing. *Genome research*, 22, 142–50. 17

- [9] Barlow, D.P. (2011). Genomic imprinting: A mammalian epigenetic discovery model.

 Annu. Rev. Genet., 45, 379–403. 7, 9
- [10] Bejerano, G. (2004). Ultraconserved elements in the human genome. Science, 304, 1321– 1325. 20
- [11] BENTWICH, I., AVNIEL, A., KAROV, Y., AHARONOV, R., GILAD, S., BARAD, O., BARZI-LAI, A., EINAT, P., EINAV, U., MEIRI, E., SHARON, E., SPECTOR, Y. & BENTWICH, Z. (2005). Identification of hundreds of conserved and nonconserved human micrornas. *Nature* genetics, 37, 766–770. 20
- [12] Bevilacqua, A., Ceriani, M.C., Capaccioli, S. & Nicolin, A. (2003). Post-transcriptional regulation of gene expression by degradation of messenger rnas. J. Cell. Physiol., 195, 356–372. 15
- [13] BLEKHMAN, R., MARIONI, J.C., ZUMBO, P., STEPHENS, M. & GILAD, Y. (2010). Sexspecific and lineage-specific alternative splicing in primates. Genome Res, 20, 180–9. 73, 96
- [14] BOHNERT, R. & RATSCH, G. (2010). rquant.web: a tool for rna-seq-based transcript quantitation. Nucleic Acids Research, 38, W348–W351. 38
- [15] Bona, F.D., Ossowski, S., Schneeberger, K. & Ratsch, G. (2008). Optimal spliced alignments of short sequence reads. *Bioinformatics*, **24**, i174–i180. 27
- [16] BRAWAND, D., SOUMILLON, M., NECSULEA, A., JULIEN, P., CSÁRDI, G., HARRIGAN, P., WEIER, M., LIECHTI, A., AXIMU-PETRI, A., KIRCHER, M., ALBERT, F.W., ZELLER, U., KHAITOVICH, P., GRÜTZNER, F., BERGMANN, S., NIELSEN, R., PÄÄBO, S. & KAESSMANN, H. (2011). The evolution of gene expression levels in mammalian organs. *Nature*, 478, 343–348. 36
- [17] BUTLER, M.G. (2009). Genomic imprinting disorders in humans: a mini-review. J Assist Reprod Genet, 26, 477–486. 9

- [18] CAMPOS, E.I. & REINBERG, D. (2009). Histones: Annotating chromatin. Annu. Rev. Genet., 43, 559–599. 5
- [19] CARNINCI, P., SANDELIN, A., LENHARD, B., KATAYAMA, S., SHIMOKAWA, K., PON-JAVIC, J., SEMPLE, C.A.M., TAYLOR, M.S., ENGSTRÖM, P.G., FRITH, M.C., FORREST, A.R.R., ALKEMA, W.B., TAN, S.L., PLESSY, C., KODZIUS, R., RAVASI, T., KASUKAWA, T., FUKUDA, S., KANAMORI-KATAYAMA, M., KITAZUME, Y., KAWAJI, H., KAI, C., NAKAMURA, M., KONNO, H., NAKANO, K., MOTTAGUI-TABAR, S., ARNER, P., CHESI, A., GUSTINCICH, S., PERSICHETTI, F., SUZUKI, H., GRIMMOND, S.M., WELLS, C.A., ORLANDO, V., WAHLESTEDT, C., LIU, E.T., HARBERS, M., KAWAI, J., BAJIC, V.B., HUME, D.A. & HAYASHIZAKI, Y. (2006). Genome-wide analysis of mammalian promoter architecture and evolution. Nature genetics, 38, 626–635. 11, 12
- [20] CHEOK, M.H., YANG, W., PUI, C.H., DOWNING, J.R., CHENG, C., NAEVE, C.W., RELLING, M.V. & EVANS, W.E. (2003). Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. *Nat Genet*, 34, 85–90. 18
- [21] COCK, P.J.A., FIELDS, C.J., GOTO, N., HEUER, M.L. & RICE, P.M. (2010). The sanger fastq file format for sequences with quality scores, and the solexa/illumina fastq variants. *Nucleic Acids Research*, 38, 1767–1771. 25
- [22] COOPER, G.M., STONE, E.A., ASIMENOS, G., PROGRAM, N.C.S., GREEN, E.D., BAT-ZOGLOU, S. & SIDOW, A. (2005). Distribution and intensity of constraint in mammalian genomic sequence. Genome Res, 15, 901–13. 71
- [23] CORE, L.J. & LIS, J.T. (2008). Transcription regulation through promoter-proximal pausing of rna polymerase ii. Science, 319, 1791–1792. 5
- [24] CORE, L.J., WATERFALL, J.J. & LIS, J.T. (2008). Nascent rna sequencing reveals widespread pausing and divergent initiation at human promoters. 1–4. 5
- [25] DANECEK, P., NELLÅKER, C., MCINTYRE, R.E., BUENDIA-BUENDIA, J.E., BUMPSTEAD, S., PONTING, C.P., FLINT, J., DURBIN, R., KEANE, T.M. & ADAMS, D.J. (2012). High

- levels of rna-editing site conservation amongst 15 laboratory mouse strains. *Genome Biology*, **13**, 26. 17
- [26] DAVULURI, R.V., SUZUKI, Y., SUGANO, S., PLASS, C. & HUANG, T.H.M. (2008). The functional consequences of alternative promoter use in mammalian genomes. *Trends in Genetics*, 24, 167–177. 11, 12
- [27] DEGNER, J.F., MARIONI, J.C., PAI, A.A., PICKRELL, J.K., NKADORI, E., GILAD, Y. & PRITCHARD, J.K. (2009). Effect of read-mapping biases on detecting allele-specific expression from rna-sequencing data. *Bioinformatics*, 25, 3207–12. 22
- [28] DEVEALE, B., KOOY, D.V.D. & BABAK, T. (2012). Critical evaluation of imprinted gene expression by rna–seq: A new perspective. PLoS Genet, 8, e1002600. 61, 64, 74, 157, 158
- [29] DJUPEDAL, I. & EKWALL, K. (2009). Epigenetics: heterochromatin meets rnai. Cell Res, 19, 282–295. 16
- [30] Doss, S., Schadt, E.E., Drake, T.A. & Lusis, A.J. (2005). Cis-acting expression quantitative trait loci in mice. Genome Res, 15, 681–91. 53
- [31] EDGREN, H., MURUMAGI, A., KANGASPESKA, S., NICORICI, D., HONGISTO, V., KLEIVI, K., RYE, I.H., NYBERG, S., WOLF, M., BORRESEN-DALE, A.L. & KALLIONIEMI, O. (2011). Identification of fusion genes in breast cancer by paired-end rna-sequencing. *Genome Biology*, 12, R6. 22
- [32] EDWALDS-GILBERT, G., VERALDI, K.L. & MILCAREK, C. (1997). Alternative poly(a) site selection in complex transcription units: means to an end? *Nucleic Acids Research*, 25, 2547–61. 12
- [33] ELLIOTT, M.H., SMITH, D.S., PARKER, C.E. & BORCHERS, C. (2009). Current trends in quantitative proteomics. J Mass Spectrom, 44, 1637–60. 2
- [34] EMERSON, J.J., HSIEH, L.C., SUNG, H.M., WANG, T.Y., HUANG, C.J., Lu, H.H.S., Lu, M.Y.J., Wu, S.H. & Li, W.H. (2010). Natural selection on cis and trans regulation in yeasts. Genome Research, 20, 826–836. 54

- [35] ENARD, W., KHAITOVICH, P., KLOSE, J., ZÖLLNER, S., HEISSIG, F., GIAVALISCO, P., NIESELT-STRUWE, K., MUCHMORE, E., VARKI, A., RAVID, R., DOXIADIS, G.M., BONTROP, R.E. & PÄÄBO, S. (2002). Intra- and interspecific variation in primate gene expression patterns. Science, 296, 340–3. 73
- [36] EULALIO, A., REHWINKEL, J., STRICKER, M., HUNTZINGER, E., YANG, S.F., DOERKS, T., DORNER, S., BORK, P., BOUTROS, M. & IZAURRALDE, E. (2007). Target-specific requirements for enhancers of decapping in mirna-mediated gene silencing. Genes & Development, 21, 2558–2570. 15, 16
- [37] FARAJOLLAHI, S. & MAAS, S. (2010). Molecular diversity through rna editing: a balancing act. Trends in Genetics, 26, 221–230. 17
- [38] Ferguson-Smith, A.C. (2011). Genomic imprinting: the emergence of an epigenetic paradigm. *Nature Reviews Genetics*, **12**, 565–75. 7, 9
- [39] FLICEK, P., AMODE, M.R., BARRELL, D., BEAL, K., BRENT, S., CARVALHO-SILVA, D., CLAPHAM, P., COATES, G., FAIRLEY, S., FITZGERALD, S., GIL, L., GORDON, L., HENDRIX, M., HOURLIER, T., JOHNSON, N., KÄHÄRI, A.K., KEEFE, D., KEENAN, S., KINSELLA, R., KOMOROWSKA, M., KOSCIELNY, G., KULESHA, E., LARSSON, P., LONGDEN, I., MCLAREN, W., MUFFATO, M., OVERDUIN, B., PIGNATELLI, M., PRITCHARD, B., RIAT, H.S., RITCHIE, G.R.S., RUFFIER, M., SCHUSTER, M., SOBRAL, D., TANG, Y.A., TAYLOR, K., TREVANION, S., VANDROVCOVA, J., WHITE, S., WILSON, M., WILDER, S.P., AKEN, B.L., BIRNEY, E., CUNNINGHAM, F., DUNHAM, I., DURBIN, R., FERNÁNDEZ-SUAREZ, X.M., HARROW, J., HERRERO, J., HUBBARD, T.J.P., PARKER, A., PROCTOR, G., SPUDICH, G., VOGEL, J., YATES, A., ZADISSA, A. & SEARLE, S.M.J. (2012). Ensembl 2012. Nucleic Acids Research, 40, D84–90. 49, 58
- [40] FUDA, N.J., ARDEHALI, M.B. & LIS, J.T. (2009). Defining mechanisms that regulate rna polymerase ii transcription in vivo. *Nature*, 461, 186–192. 6
- [41] GHILDIYAL, M. & ZAMORE, P.D. (2009). Small silencing rnas: an expanding universe. Nature Reviews Genetics, 10, 94–108. 15, 16

- [42] GHOSH, S.K.B., MISSRA, A. & GILMOUR, D.S. (2011). Negative elongation factor accelerates the rate at which heat shock genes are shut off by facilitating dissociation of heat shock factor. *Molecular and Cellular Biology*, 31, 4232–4243. 5
- [43] Gibson, G. & Weir, B. (2005). The quantitative genetics of transcription. *Trends Genet*, 21, 616–23. 53
- [44] GLAUS, P., HONKELA, A. & RATTRAY, M. (2012). Identifying differentially expressed transcripts from rna-seq data with biological variation. *Bioinformatics*, 28, 1721–8. 33, 41, 42, 80
- [45] GORDON, K.L. & RUVINSKY, I. (2012). Tempo and mode in evolution of transcriptional regulation. PLoS Genet, 8, e1002432. 52, 75
- [46] GOTT, J.M. & EMESON, R.B. (2000). Functions and mechanisms of rna editing. Annu. Rev. Genet., 34, 499–531. 17
- [47] GRABHERR, M.G., HAAS, B.J., YASSOUR, M., LEVIN, J.Z., THOMPSON, D.A., AMIT, I., ADICONIS, X., FAN, L., RAYCHOWDHURY, R., ZENG, Q., CHEN, Z., MAUCELI, E., HACOHEN, N., GNIRKE, A., RHIND, N., PALMA, F.D., BIRREN, B.W., NUSBAUM, C., LINDBLAD-TOH, K., FRIEDMAN, N. & REGEV, A. (2011). Full-length transcriptome assembly from rna-seq data without a reference genome. Nature Biotechnology, 29, 644–652.
- [48] GREEN, C.B., TAKAHASHI, J.S. & BASS, J. (2008). The meter of metabolism. Cell, 134, 728–42. 18
- [49] GREGG, C., ZHANG, J., BUTLER, J.E., HAIG, D. & DULAC, C. (2010). Sex-specific parent-of-origin allelic expression in the mouse brain. Science, 329, 682–5. 54, 61, 64, 74, 79
- [50] GUTTMAN, M., GARBER, M., LEVIN, J.Z., DONAGHEY, J., ROBINSON, J., ADICONIS, X., FAN, L., KOZIOL, M.J., GNIRKE, A., NUSBAUM, C., RINN, J.L., LANDER, E.S. & REGEV, A. (2010). Ab initio reconstruction of cell type—specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincrnas. *Nature Biotechnology*, 28, 503–510. 22, 36, 44

- [51] HAIG, D. (2004). Genomic imprinting and kinship: How good is the evidence? Annual review of genetics, 38, 553–585. 63, 157, 158
- [52] HALEES, A.S., EL-BADRAWI, R. & KHABAR, K.S.A. (2007). Ared organism: expansion of ared reveals au-rich element cluster variations between human and mouse. *Nucleic Acids Research*, 36, D137–D140. 15
- [53] HALL-POGAR, T., LIANG, S., HAGUE, L.K. & LUTZ, C.S. (2007). Specific trans-acting proteins interact with auxiliary rna polyadenylation elements in the cox-2 3'-utr. RNA, 13, 1103–1115. 14
- [54] HANSEN, K.D., BRENNER, S.E. & DUDOIT, S. (2010). Biases in illumina transcriptome sequencing caused by random hexamer priming. *Nucleic Acids Research*, 38, e131–e131. 38, 39
- [55] HARDCASTLE, T.J. & KELLY, K.A. (2010). bayseq: empirical bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 2009 10:204, 11, 422. 36, 41
- [56] HARR, B. & TURNER, L.M. (2010). Genome-wide analysis of alternative splicing evolution among mus subspecies. Mol Ecol, 19, 228–239. 96
- [57] HAYDEN, E.C. (2012). Rna studies under fire. Nature, 484, 428. 22
- [58] HEBENSTREIT, D., FANG, M., Gu, M., CHAROENSAWAN, V., VAN OUDENAARDEN, A. & TEICHMANN, S.A. (2011). Rna sequencing reveals two major classes of gene expression levels in metazoan cells. *Molecular Systems Biology*, 7, 497. 36
- [59] HOUSELEY, J. & TOLLERVEY, D. (2009). The many pathways of rna degradation. Cell, 136, 763-776. 10, 15
- [60] Huang, S., Zhang, J., Li, R., Zhang, W., He, Z., Lam, T.W., Peng, Z. & Yiu, S.M. (2011). Soapsplice: Genome-wide ab initio detection of splice junctions from rna-seq data. Front. Gene., 2, 1–12. 27, 29

- [61] HUDSON, Q.J., KULINSKI, T.M., HUETTER, S.P. & BARLOW, D.P. (2010). Genomic imprinting mechanisms in embryonic and extraembryonic mouse tissues. *Heredity*, 105, 45– 56. 7
- [62] HUNTZINGER, E. & IZAURRALDE, E. (2011). Gene silencing by micrornas: contributions of translational repression and mrna decay. Nature Reviews Genetics, 12, 99–110. 15, 16
- [63] JIANG, H. & WONG, W.H. (2009). Statistical inferences for isoform expression in rna-seq. Bioinformatics, 25, 1026–32. 33
- [64] JOHN, R.M. & LEFEBVRE, L. (2011). Developmental regulation of somatic imprints. Differentiation, 81, 270–280. 7
- [65] KATZ, Y., WANG, E.T., AIROLDI, E.M. & BURGE, C.B. (2010). Analysis and design of rna sequencing experiments for identifying isoform regulation. *Nature Methods*, 7, 1009–1015. 33
- [66] KAWAJI, H., FRITH, M.C., KATAYAMA, S., SANDELIN, A., KAI, C., KAWAI, J., CARN-INCI, P. & HAYASHIZAKI, Y. (2006). Dynamic usage of transcription start sites within core promoters. *Genome Biology*, 7, R118. 12, 97
- [67] KEREM, B., ROMMENS, J.M., BUCHANAN, J.A., MARKIEWICZ, D., COX, T.K., CHAKRAVARTI, A., BUCHWALD, M. & TSUI, L.C. (1989). Identification of the cystic fibrosis gene: genetic analysis. *Science*, 245, 1073–80. 20
- [68] Kim, J.K., Samaranayake, M. & Pradhan, S. (2009). Epigenetic mechanisms in mammals. Cell. Mol. Life Sci., 66, 596–612. 6, 7, 9
- [69] Kimura, K., Wakamatsu, A., Suzuki, Y., Ota, T., Nishikawa, T., Yamashita, R., ichi Yamamoto, J., Sekine, M., Tsuritani, K., Wakaguri, H., Ishii, S., Sugiyama, T., Saito, K., Isono, Y., Irie, R., Kushida, N., Yoneyama, T., Otsuka, R., Kanda, K., Yokoi, T., Kondo, H., Wagatsuma, M., Murakawa, K., Ishida, S., Ishibashi, T., Takahashi-Fujii, A., Tanase, T., Nagai, K., Kikuchi, H., Nakai, K., Isogai, T. & Sugano, S. (2005). Diversification of transcriptional modulation: Large-scale identification and characterization of putative alternative promoters of human genes. Genome research, 16, 55–65. 12

- [70] KING, M.C. & WILSO, A.C. (1975). Evolution at two levels in humans and chimpanzees. Science, 188, 107–188. 20
- [71] KLOSE, R.J. & BIRD, A.P. (2006). Genomic dna methylation: the mark and its mediators.
 Trends in Biochemical Sciences, 31, 89–97. 6
- [72] KOERNER, M.V., PAULER, F.M., HUANG, R. & BARLOW, D.P. (2009). The function of non-coding rnas in genomic imprinting. *Development*, 136, 1771–1783. 7, 87
- [73] KOGERMAN, P., KRAUSE, D., RAHNAMA, F., KOGERMAN, L., UNDÉN, A.B., ZAPHI-ROPOULOS, P.G. & TOFTGÅRD, R. (2002). Alternative first exons of ptch1 are differentially regulated in vivo and may confer different functions to the ptch1 protein. Oncogene, 21, 6007–16. 12
- [74] KVAM, V.M., LIU, P. & SI, Y. (2012). A comparison of statistical methods for detecting differentially expressed genes from rna-seq data. American Journal of Botany, 99, 248–256.
 41
- [75] LANDRY, C.R., WITTKOPP, P.J., TAUBES, C.H., RANZ, J.M., CLARK, A.G. & HARTL, D.L. (2005). Compensatory cis-trans evolution and the dysregulation of gene expression in interspecific hybrids of drosophila. *Genetics*, 171, 1813–1822. 76
- [76] LANGMEAD, B., TRAPNELL, C., POP, M. & SALZBERG, S.L. (2009). Ultrafast and memory-efficient alignment of short dna sequences to the human genome. *Genome Biology*, 10, R25, 27, 45, 56
- [77] LEDERGERBER, C. & DESSIMOZ, C. (2011). Base-calling for next-generation sequencing platforms. *Briefings in Bioinformatics*, **12**, 489–497. 25
- [78] LEESMURDOCK, D.J. & WALSH, C.P. (2008). Dna methylation reprogramming in the germ line. *Epigenetics*, 5–13. 63, 157, 158
- [79] LEINONEN, R., AKHTAR, R., BIRNEY, E., BONFIELD, J., BOWER, L., CORBETT, M., CHENG, Y., DEMIRALP, F., FARUQUE, N., GOODGAME, N., GIBSON, R., HOAD, G., HUNTER, C., JANG, M., LEONARD, S., LIN, Q., LOPEZ, R., MAGUIRE, M., McWILLIAM,

- H., Plaister, S., Radhakrishnan, R., Sobhany, S., Slater, G., Hoopen, P.T., Valentin, F., Vaughan, R., Zalunin, V., Zerbino, D. & Cochrane, G. (2010). Improvements to services at the european nucleotide archive. *Nucleic Acids Research*, **38**, D39–45. 44
- [80] LEMOS, B., MEIKLEJOHN, C.D., CÁCERES, M. & HARTL, D.L. (2005). Rates of divergence in gene expression profiles of primates, mice, and flies: stabilizing selection and variability among functional categories. *Evolution*, 59, 126–37. 19
- [81] Lemos, B., Araripe, L.O., Fontanillas, P. & Hartl, D.L. (2008). Dominance and the evolutionary accumulation of cis- and trans-effects on gene expression. *PNAS*, 1–6. 52
- [82] LEVIN, J.Z., YASSOUR, M., ADICONIS, X., NUSBAUM, C., THOMPSON, D.A., FRIEDMAN, N., GNIRKE, A. & REGEV, A. (2010). Comprehensive comparative analysis of strand-specific rna sequencing methods. *Nature Publishing Group*, 7, 709–715. 24
- [83] LI, B., RUOTTI, V., STEWART, R.M., THOMSON, J.A. & DEWEY, C.N. (2010). Rna-seq gene expression estimation with read mapping uncertainty. *Bioinformatics*, 26, 493–500. 33
- [84] LI, H. & DURBIN, R. (2009). Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics, 25, 1754–1760. 27, 45
- [85] LI, H., HANDSAKER, B., WYSOKER, A., FENNELL, T., RUAN, J., HOMER, N., MARTH, G., ABECASIS, G., DURBIN, R. & SUBGROUP, .G.P.D.P. (2009). The sequence alignment/map format and samtools. *Bioinformatics*, 25, 2078–9. 32, 48
- [86] LI, J., JIANG, H. & WONG, W.H. (2010). Modeling non-uniformity in short-read rates in rna-seq data. Genome Biol, 11, R50. 39
- [87] LI, R., LI, Y., KRISTIANSEN, K. & WANG, J. (2008). Soap: short oligonucleotide alignment program. Bioinformatics, 24, 713–714. 27
- [88] LI, Y. & SASAKI, H. (2011). Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming. *Nature Publishing Group*, 21, 466–473. 61

- [89] LINDBLAD-TOH, K., GARBER, M., ZUK, O., LIN, M.F., PARKER, B.J., WASHIETL, S., KHERADPOUR, P., ERNST, J., JORDAN, G., MAUCELI, E., WARD, L.D., LOWE, C.B., HOLLOWAY, A.K., CLAMP, M., GNERRE, S., LDI, J.A., BEAL, K., CHANG, J., CLAWSON, H., CUFF, J., PALMA, F.D., FITZGERALD, S., FLICEK, P., GUTTMAN, M., HUBISZ, M.J., JAFFE, D.B., JUNGREIS, I., KENT, W.J., KOSTKA, D., LARA, M., MARTINS, A.L., MASSINGHAM, T., MOLTKE, I., RANEY, B.J., RASMUSSEN, M.D., ROBINSON, J., STARK, A., VILELLA, A.J., WEN, J., XIE, X., ZODY, M.C., PLATFORM, B.I.S., TEAM, W.G.A., WORLEY, K.C., KOVAR, C.L., MUZNY, D.M., GIBBS, R.A., OF MEDICINE HUMAN GENOME SEQUENCING CENTER SEQUENCING TEAM, B.C., WARREN, W.C., MARDIS, E.R., WEINSTOCK, G.M., WILSON, R.K., AT WASHINGTON UNIVERSITY, G.I., BIRNEY, E., MARGULIES, E.H., HERRERO, J., GREEN, E.D., HAUSSLER, D., SIEPEL, A., GOLDMAN, N., POLLARD, K.S., PEDERSEN, J.S. & KELLIS, E.S.L.M. (2011). A high-resolution map of human evolutionary constraint using 29 mammals. Nature, 478, 476–481. 20
- [90] Luco, R.F. & Misteli, T. (2011). More than a splicing code: integrating the role of rna, chromatin and non-coding rna in alternative splicing regulation. *Curr Opin Genet Dev*, **21**, 366–72. 11
- [91] Majewski, J. & Pastinen, T. (2011). The study of eqtl variations by rna-seq: from snps to phenotypes. TRENDS in Genetics, 27, 72-79. 52
- [92] Manley, J.L., Proudfoot, N.J. & Platt, T. (1989). Rna 3'-end formation. Genes & Development, 3, 2218–22. 10
- [93] MARIONI, J., MASON, C., MANE, S., STEPHENS, M. & GILAD, Y. (2008). Rna-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome research. 2, 22, 33, 40
- [94] Mcmanus, C.J. & Graveley, B.R. (2011). Rna structure and the mechanisms of alternative splicing. Current Opinion in Genetics & Development, 21, 373–379. 10, 11, 14

- [95] MCMANUS, C.J., COOLON, J.D., DUFF, M.O., EIPPER-MAINS, J., GRAVELEY, B.R. & WITTKOPP, P.J. (2010). Regulatory divergence in drosophila revealed by mrna-seq. Genome research, 20, 816–25. 52, 54, 75, 76
- [96] MEDVEDOVIC, M., GEAR, R., FREUDENBERG, J.M., SCHNEIDER, J., BORNSCHEIN, R., YAN, M., MISTRY, M.J., HENDRIX, H., KARYALA, S., HALBLEIB, D., HEFFELFINGER, S., CLEGG, D.J. & ANDERSON, M.W. (2009). Influence of fatty acid diets on gene expression in rat mammary epithelial cells. *Physiological Genomics*, 38, 80–88. 18
- [97] MIN, I.M., WATERFALL, J.J., CORE, L.J., MUNROE, R.J., SCHIMENTI, J. & LIS, J.T. (2011). Regulating rna polymerase pausing and transcription elongation in embryonic stem cells. Genes & Development, 25, 742–754. 5
- [98] MODREK, B. & LEE, C. (2002). A genomic view of alternative splicing. Nature genetics, 30, 13–19. 14
- [99] Montgomery, S.B., Sammeth, M., Gutierrez-Arcelus, M., Lach, R.P., Ingle, C., Nisbett, J., Guigo, R. & Dermitzakis, E.T. (2010). Transcriptome genetics using second generation sequencing in a caucasian population. *Nature*, 464, 773–7. 44
- [100] MORGAN, M., ANDERS, S., LAWRENCE, M., ABOYOUN, P., PAGES, H. & GENTLEMAN, R. (2009). Shortread: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. *Bioinformatics*, 25, 2607. 45
- [101] MORTAZAVI, A., WILLIAMS, B. & MCCUE, K. (2008). Mapping and quantifying mammalian transcriptomes by rna-seq. *Nature Methods*. 23, 32, 35, 38
- [102] Nelson, C.E., Hersh, B.M. & Carroll, S.B. (2004). The regulatory content of intergenic dna shapes genome architecture. *Genome Biology*, 5, R25. 54
- [103] Nilsen, T.W. & Graveley, B.R. (2010). Expansion of the eukaryotic proteome by alternative splicing. *Nature*, **463**, 457. 13
- [104] NISHIKURA, K. (2010). Functions and regulation of rna editing by adar deaminases. Annu. Rev. Biochem., 79, 321–349. 17

- [105] OSTMAN, B., HINTZE, A. & ADAMI, C. (2012). Impact of epistasis and pleiotropy on evolutionary adaptation. Proceedings of the Royal Society B: Biological Sciences, 279, 247– 256. 19
- [106] OZSOLAK, F., KAPRANOV, P., FOISSAC, S., KIM, S.W., FISHILEVICH, E., MONAGHAN, A.P., JOHN, B. & MILOS, P.M. (2010). Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. *Cell*, 143, 1018–1029. 14
- [107] PACHTER, L. (2011). Models for transcript quantification from rna-seq. Submitted, 1–28. 33
- [108] PAN, Q., SHAI, O., LEE, L.J., FREY, B.J. & BLENCOWE, B.J. (2008). Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. *Nature genetics*, 40, 1413–5. 10, 22
- [109] PARKHOMCHUK, D., BORODINA, T., AMSTISLAVSKIY, V., BANARU, M., HALLEN, L., KROBITSCH, S., LEHRACH, H. & SOLDATOV, A. (2009). Transcriptome analysis by strandspecific sequencing of complementary dna. *Nucleic Acids Research*, 37, e123. 24
- [110] Parkinson, H., Kapushesky, M., Kolesnikov, N., Rustici, G., Shojatalab, M., Abeygunawardena, N., Berube, H., Dylag, M., Emam, I., Farne, A., Holloway, E., Lukk, M., Malone, J., Mani, R., Pilicheva, E., Rayner, T., Rezwan, F., Sharma, A., Williams, E., Bradley, X., Adamusiak, T., Brandizi, M., Burdett, T., Coulson, R., Krestyaninova, M., Kurnosov, P., Maguire, E., Neogi, S., Rocca-Serra, P., Sansone, S.A., Sklyar, N., Zhao, M., Sarkans, U. & Brazma, A. (2009). Arrayexpress update—from an archive of functional genomics experiments to the atlas of gene expression. Nucleic Acids Research, 37, D868. 44, 45
- [111] Peng, Z., Cheng, Y., Tan, B.C.M., Kang, L., Tian, Z., Zhu, Y., Zhang, W., Liang, Y., Hu, X., Tan, X., Guo, J., Dong, Z., Liang, Y., Bao, L. & Wang, J. (2012). Comprehensive analysis of rna-seq data reveals extensive rna editing in a human transcriptome. *Nature Biotechnology*, 30, 253–60. 17
- [112] PERTEA, M. & SALZBERG, S.L. (2010). Between a chicken and a grape: estimating the number of human genes. *Genome Biology*, **11**, 206. 14

- [113] PHILLIPS, P.C. (2008). Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. *Nature Reviews Genetics*, **9**, 855–67. 19
- [114] PICKRELL, J.K., MARIONI, J.C., PAI, A.A., DEGNER, J.F., ENGELHARDT, B.E., NKADORI, E., VEYRIERAS, J.B., STEPHENS, M., GILAD, Y. & PRITCHARD, J.K. (2010). Understanding mechanisms underlying human gene expression variation with rna sequencing. Nature, 464, 768–772. 53, 75
- [115] POP, M. & SALZBERG, S.L. (2008). Bioinformatics challenges of new sequencing technology. Trends Genet, 24, 142–9. 23
- [116] PREKER, P., NIELSEN, J., KAMMLER, S., LYKKE-ANDERSEN, S., CHRISTENSEN, M.S., MAPENDANO, C.K., SCHIERUP, M.H. & JENSEN, T.H. (2008). Rna exosome depletion reveals transcription upstream of active human promoters. Science, 322, 1851–4. 5
- [117] PROSNIAK, M., HOOPER, D.C., DIETZSCHOLD, B. & KOPROWSKI, H. (2001). Effect of rabies virus infection on gene expression in mouse brain. Proc Natl Acad Sci USA, 98, 2758– 63. 18
- [118] PROUDFOOT, N.J. & BROWNLEE, G.G. (1976). 3' non-coding region sequences in eukaryotic messenger rna. *Nature*, **263**, 211–4. 14
- [119] RAYNER, T.F., ROCCA-SERRA, P., SPELLMAN, P.T., CAUSTON, H.C., FARNE, A., HOLLOWAY, E., IRIZARRY, R.A., LIU, J., MAIER, D.S., MILLER, M., PETERSEN, K., QUACKENBUSH, J., SHERLOCK, G., STOECKERT, C.J., WHITE, J., WHETZEL, P.L., WYMORE, F., PARKINSON, H., SARKANS, U., BALL, C.A. & BRAZMA, A. (2006). A simple spreadsheet-based, miame-supportive format for microarray data: Mage-tab. BMC Bioinformatics 2009 10:204, 7, 489. 49
- [120] RICHARD, H., SCHULZ, M.H., SULTAN, M., NURNBERGER, A., SCHRINNER, S., BALZ-EREIT, D., DAGAND, E., RASCHE, A., LEHRACH, H., VINGRON, M., HAAS, S.A. & YASPO, M.L. (2010). Prediction of alternative isoforms from exon expression levels in rnaseq experiments. *Nucleic Acids Research*, **38**, e112–e112. 33

- [121] ROBERTS, A., TRAPNELL, C., DONAGHEY, J., RINN, J. & PACHTER, L. (2011). Improving rna-seq expression estimates by correcting for fragment bias. *Genome Biology*, 12, R22. 38, 39, 40
- [122] Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S.D., Mungall, K., Lee, S., Okada, H.M., Qian, J.Q., Griffith, M., Raymond, A., Thiessen, N., Cezard, T., Butterfield, Y.S., Newsome, R., Chan, S.K., She, R., Varhol, R., Kamoh, B., Prabhu, A.L., Tam, A., Zhao, Y., Moore, R.A., Hirst, M., Marra, M.A., Jones, S.J.M., Hoodless, P.A. & Birol, I. (2010). De novo assembly and analysis of rna-seq data. *Nature Methods*, 7, 909–912. 26
- [123] ROBINSON, M.D. & OSHLACK, A. (2010). A scaling normalization method for differential expression analysis of rna-seq data. *Genome Biology*, **11**, R25. 36
- [124] ROBINSON, M.D. & SMYTH, G.K. (2007). Small-sample estimation of negative binomial dispersion, with applications to sage data. BIOSTATISTICS, 9, 321–332. 41
- [125] ROBINSON, M.D., MCCARTHY, D.J. & SMYTH, G.K. (2010). edger: a bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics*, 26, 139–140. 36, 40
- [126] ROCKMAN, M.V. & KRUGLYAK, L. (2006). Genetics of global gene expression. Nature Reviews Genetics, 7, 862–872. 18
- [127] Ross, J. (1995). mrna stability in mammalian cells. Microbiol Rev. 59, 423–50. 14
- [128] Saha, A., Wittmeyer, J. & Cairns, B.R. (2006). Chromatin remodelling: the industrial revolution of dna around histones. Nat Rev Mol Cell Biol, 7, 437–447. 6
- [129] Saltzman, A.L., Pan, Q. & Blencowe, B.J. (2011). Regulation of alternative splicing by the core spliceosomal machinery. *Genes & Development*, **25**, 373–384. 11
- [130] SANDELIN, A., CARNINCI, P., LENHARD, B., PONJAVIC, J., HAYASHIZAKI, Y. & HUME, D.A. (2007). Mammalian rna polymerase ii core promoters: insights from genome-wide studies. *Nature Reviews Genetics*, 8, 424–436. 12

- [131] SCHATZ, M.C., LANGMEAD, B. & SALZBERG, S.L. (2010). Cloud computing and the dna data race. Nature Publishing Group, 28, 691–693. 44
- [132] SCHOENBERG, D.R. & MAQUAT, L.E. (2012). Regulation of cytoplasmic mrna decay. Nature Reviews Genetics, 13, 246–259. 15
- [133] SCHREM, H., KLEMPNAUER, J.R. & BORLAK, J.R. (2002). Liver-enriched transcription factors in liver function and development. part i: The hepatocyte nuclear factor network and liver-specific gene expression. *Pharmacological Reviews*, 54, 129–158. 71
- [134] SCHULZ, M.H., ZERBINO, D.R., VINGRON, M. & BIRNEY, E. (2012). Oases: robust de novo rna-seq assembly across the dynamic range of expression levels. *Bioinformatics*, 28, 1086–1092. 26, 29
- [135] SEILA, A.C., CALABRESE, J.M., LEVINE, S.S., YEO, G.W., RAHL, P.B., FLYNN, R.A., YOUNG, R.A. & SHARP, P.A. (2008). Divergent transcription from active promoters. Science, 322, 1849–51. 5
- [136] Seila, A.C., Core, L.J., Lis, J.T. & Sharp, P.A. (2009). Divergent transcription: a new feature of active promoters. *Cell Cycle*, **8**, 2557–64. 4, 5
- [137] SHETH, N., ROCA, X., HASTINGS, M.L., ROEDER, T., KRAINER, A.R. & SACHIDANAN-DAM, R. (2006). Comprehensive splice-site analysis using comparative genomics. *Nucleic Acids Research*, 34, 3955–67. 10, 11
- [138] Siomi, M.C., Sato, K., Pezic, D. & Aravin, A.A. (2011). Piwi-interacting small rnas: the vanguard of genome defence. *Nature Publishing Group*, **12**, 246–258. 16
- [139] STERN, D.L. & ORGOGOZO, V. (2008). The loci of evolution: how predictable is genetic evolution? Evolution, 62, 2155-77. 20, 52
- [140] STULTS, D.M., KILLEN, M.W., PIERCE, H.H. & PIERCE, A.J. (2007). Genomic architecture and inheritance of human ribosomal rna gene clusters. Genome research, 18, 13–18.

- [141] SYDOW, J.F. & CRAMER, P. (2009). Rna polymerase fidelity and transcriptional proofreading. Current Opinion in Structural Biology, 1–8. 16
- [142] TIAN, B., Hu, J., ZHANG, H. & LUTZ, C.S. (2005). A large-scale analysis of mrna polyadenylation of human and mouse genes. *Nucleic Acids Research*, **33**, 201–12. 12
- [143] TIROSH, I., REIKHAV, S., LEVY, A. & BARKAI, N. (2009). A yeast hybrid provides insight into the evolution of gene expression regulation. *Science*, **324**, 659. 53
- [144] TRAPNELL, C. & SALZBERG, S. (2009). How to map billions of short reads onto genomes.
 Nature biotechnology. 32
- [145] TRAPNELL, C., PACHTER, L. & SALZBERG, S. (2009). Tophat: discovering splice junctions with rna-seq. Bioinformatics, 25, 1105. 27, 45
- [146] TRAPNELL, C., WILLIAMS, B.A., PERTEA, G., MORTAZAVI, A., KWAN, G., VAN BAREN, M.J., SALZBERG, S.L., WOLD, B.J. & PACHTER, L. (2010). Transcript assembly and quantification by rna-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 28, 511. 29, 30, 40, 44, 48
- [147] Turro, E., Su, S.Y., Goncalves, A., Coin, L., Richardson, S. & Lewin, A. (2011).
 Haplotype and isoform specific expression estimation using multi-mapping rna-seq reads.
 Genome Biology, 12, R13–R13. 32, 33, 34, 35, 39, 48, 64, 80
- [148] VALENCIA-SANCHEZ, M.A. (2006). Control of translation and mrna degradation by mirnas and sirnas. Genes & Development, 20, 515–524. 15
- [149] VAQUERIZAS, J.M., KUMMERFELD, S.K., TEICHMANN, S.A. & LUSCOMBE, N.M. (2009).
 A census of human transcription factors: function, expression and evolution. *Nature Reviews Genetics*, 10, 252.
- [150] VILELLA, A.J., SEVERIN, J., URETA-VIDAL, A., HENG, L., DURBIN, R. & BIRNEY, E. (2008). Ensembleompara genetrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome research, 19, 327–335. 71

- [151] Vogel, C. & Marcotte, E.M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. *Nature Reviews Genetics*, **13**, 227–32. 2
- [152] Wajid, B. & Serpedin, E. (2012). Review of general algorithmic features for genome assemblers for next generation sequencers. *Genomics, Proteomics & Bioinformatics*, **10**, 58–73. 26
- [153] WANG, E.T., SANDBERG, R., LUO, S., KHREBTUKOVA, I., ZHANG, L., MAYR, C., KINGSMORE, S.F., SCHROTH, G.P. & BURGE, C.B. (2008). Alternative isoform regulation in human tissue transcriptomes. *Nature*, 456, 470–476. 9, 10, 14, 44, 79
- [154] Wang, G.S. & Cooper, T.A. (2007). Splicing in disease: disruption of the splicing code and the decoding machinery. *Nature Reviews Genetics*, 8, 749–761. 79
- [155] Wang, X., Soloway, P.D. & Clark, A.G. (2011). A survey for novel imprinted genes in the mouse placenta by mrna-seq. *Genetics*, **189**, 109–122. 74
- [156] Wang, Z., Gerstein, M. & Snyder, M. (2009). Rna-seq: a revolutionary tool for transcriptomics. *Nature Reviews Genetics*, **10**, 57–63. 23, 38
- [157] WESTERHOFF, H.V., WINDER, C., MESSIHA, H., SIMEONIDIS, E., ADAMCZYK, M., VERMA, M., BRUGGEMAN, F.J. & DUNN, W. (2010). Systems biology: The elements and principles of life. FEBS Letters, 583, 3882–3890. 31
- [158] WITTKOPP, P.J. (2005). Genomic sources of regulatory variation in cis and in trans. CMLS, Cell. Mol. Life Sci., 62, 1779–1783. 20
- [159] WITTKOPP, P.J. & KALAY, G. (2011). Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. *Nature Reviews Genetics*, **13**, 59. 20
- [160] WITTKOPP, P.J., HAERUM, B.K. & CLARK, A.G. (2004). Evolutionary changes in cis and trans gene regulation. *Nature*, **430**, 85–88. 53, 75
- [161] WITTKOPP, P.J., STEWART, E.E., ARNOLD, L.L., NEIDERT, A.H., HAERUM, B.K., THOMPSON, E.M., AKHRAS, S., SMITH-WINBERRY, G. & SHEFNER, L. (2009). Intraspe-

- cific polymorphism to interspecific divergence: Genetics of pigmentation in drosophila. *Science*, **326**, 540–544. 52
- [162] WOOD, A.J., SCHULZ, R., WOODFINE, K., KOLTOWSKA, K., BEECHEY, C.V., PETERS, J., BOURC'HIS, D. & OAKEY, R.J. (2008). Regulation of alternative polyadenylation by genomic imprinting. Genes & Development, 22, 1141–1146. 14, 79
- [163] WRAY, G.A. (2007). The evolutionary significance of cis-regulatory mutations. Nature Reviews Genetics, 8, 206–16. 52
- [164] Wu, T.D. & Nacu, S. (2010). Fast and snp-tolerant detection of complex variants and splicing in short reads. *Bioinformatics*, 26, 873–881. 27, 29
- [165] XIE, W., BARR, C.L., KIM, A., YUE, F., LEE, A.Y., EUBANKS, J., DEMPSTER, E.L. & REN, B. (2012). Base-resolution analyses of sequence and parent-of-origin dependent dna methylation in the mouse genome. Cell, 148, 816–831. 7, 54, 80, 87
- [166] Yang, L., Duff, M., Graveley, B., Carmichael, G. & Chen, L.L. (2011). Genomewide characterization of non-polyadenylated rnas. *Genome Biology*, **12**, R16–R16. 9
- [167] YE, D., HOEKSTRA, M., OUT, R., MEURS, I., KRUIJT, J.K., HILDEBRAND, R.B., BERKEL, T.J.C.V. & ECK, M.V. (2008). Hepatic cell-specific atp-binding cassette (abc) transporter profiling identifies putative novel candidates for lipid homeostasis in mice. Atherosclerosis, 196, 650–8. 88
- [168] YING CHU, C. & RANA, T.M. (2006). Translation repression in human cells by micrornainduced gene silencing requires rck/p54. PLoS Biol, 4, e210. 16
- [169] Zhao, J., Hyman, L. & Moore, C. (1999). Formation of mrna 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mrna synthesis. *Microbiol Mol Biol Rev*, 63, 405–45. 14
- [170] Zhou, Q., Li, T. & Price, D.H. (2012). Rna polymerase ii elongation control. *Annual Review of Biochemistry*, **81**, 119–43. 4, 5