ChEMBL logo

ChEMBL

spacer
ChEMBL Statistics
  Loading Statistics...
spacer

Document Report Card

Doc ID CHEMBL1150363
Journal Bioorg Med Chem (2008) 16:6086-6102
Title Synthesis, ligand-receptor modeling studies and pharmacological evaluation of novel 4-modified-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent and selective human A3 adenosine receptor antagonists.
Authors Colotta V, Catarzi D, Varano F, Lenzi O, Filacchioni G, Martini C, Trincavelli L, Ciampi O, Traini C, Pugliese AM, Pedata F, Morizzo E, Moro S.
Abstract The study of some 4-substituted-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives, designed as hA(3) adenosine receptor antagonists, is reported. The new compounds bear on the four-position different acylamino, sulfonylamino, benzylureido and benzyloxy moieties, which have also been combined with a para-methoxy group on the 2-phenyl ring or with a nitro residue at the six-position. Many derivatives show high hA(3) adenosine receptor affinities and selectivities both versus hA(1) and hA(2A) receptors. The observed structure-affinity relationships of this class of antagonists have been exhaustively rationalized using the recently published ligand-based homology modeling (LBHM) approach. The selected 4-bismethanesulfonylamino-2-phenyl-1,2,4-triazolo[4,3-a]quinoxalin-1-one (13), which shows high hA(3) affinity (K(i)=5.5nM) and selectivity versus hA(1), hA(2A) (both selectivity ratios>1800) and hA(2B) (cAMP assay, IC(50)>10,000nM) receptors, was tested in an in vitro rat model of cerebral ischemia, proving to be effective in preventing the failure of synaptic activity, induced by oxygen and glucose deprivation in the hippocampus, and in delaying the occurrence of anoxic depolarization.
CiteXplore 18468446
DOI 10.1016/j.bmc.2008.04.039

Bioactivity Summary

Assay Summary

Protein Target Summary

Compound Summaries

spacer
spacer