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1. Introduction

Models in biology have a long and distinguished history. By far
the most common form of biological model is the word
model, where abstractions of many observations are simply
stated in plain language. For example, the theory of evolution
is stated as a word model. Despite this familiarity with word
models, biologists have tended to be suspicious of putting the
words into mathematical form. There are good reasons for
such concern. The mathematical approach often brings with it
a bias toward simple and general explanations of observations.
Evolution, on the other hand, does not always choose simple
solutions, and abounds in special cases. It takes special effort
to develop models that are faithful to biology while drawing
upon computational and mathematical tools.

This review describes a spectrum of such models for signal-
ing pathways. At one end of the spectrum are word models ar-
ranged as the familiar signaling-pathway diagrams. At the
other end there are carefully crafted computer simulations in
which every reaction in the signaling cascade is experimentally
defined and has an attached rate constant. Models across this
spectrum have great promise for understanding signaling com-
plexity. It is interesting, at this early stage in the field, to pres-
ent a snapshot of current model development and to note
how the models themselves have begun to evolve.

Why model signaling? The challenges are considerable, and
at least the common perception is that such models have not
been particularly useful. Despite these difficulties, there is a
general consensus that modeling approaches are necessary.
The motivation for this is the sheer complexity of signaling,
backed up by a flood of raw data. The past decade has seen
an exponential rise in high-throughput experimentation. The
philosophy behind performing large-scale genome sequencing,
gene expression profiling, and proteomic analysis can be
summed up in a quote by Craig Venter: “If we hope to under-
stand biology, instead of looking at one little protein at a time,
which is not how biology works, we will need to understand
the integration of thousands of proteins in a dynamically
changing environment.”[1] Modeling and analysis tools are criti-
cal to understanding these often non-intuitive interactions.[2] In
this study we restrict ourselves to a subset of modeling studies
that deal with signaling pathways. Protein structure, genetic in-
teractions, and statistical analysis of large biological datasets
are other major areas of systems biology analysis, which we
will not consider.

In this review, we first categorize models by their degree of
quantification. We analyze the level of quantification feasible
or already accomplished in current models, using extensive lit-
erature surveys to categorize some 244 models drawn from
two public databases: DOQCS[3] (http://www.doqcs.ncbs.res.in)

and BIOCARTA (http://www.biocarta.com/genes/index.asp). We
use the survey to identify possible factors responsible for the
success or failures of quantitative modeling efforts in specific
signaling systems. We then examine the time-evolution of
modeling strategies by studying a family tree of models of the
Mitogen Activated Protein Kinase (MAPK) signaling pathway.
Finally, we discuss how different levels of modeling have
helped to advance the field by deciphering biological com-
plexity.

2. The Spectrum of Models

We define signaling models as any abstraction of signaling
function that has both descriptive and predictive power. A
word model, in its typical embodiment as a signaling block di-
agram, has both, and so does a reaction-level simulation. Such
models differ both in terms of the amount and kind of data
that are needed to specify them, and in terms of the precision
of their predictions. For concreteness, we consider three proto-
typical kinds of model : the block-diagram model, the systems
model, and the semiquantitative model. In each case we de-
scribe the scope of the model, the kind of data that it incorpo-
rates, what this information boils down to in the model, and
the kinds of predictions it can make. We illustrate each with an
example.

2.1 Block-diagram models

Block-diagram models outline the relationships between the
components of a signaling network. Such models specify the
topology of connections between signaling molecules or path-
ways. These models usually also indicate the sign of the con-
nections; that is, whether the interaction is excitatory or inhibi-
tory. Block level models are the most commonly encountered
descriptions of signaling pathways and are the staple for text-
books and databases. Such models are equivalent to pictorial
transcriptions of word models.

An enormous amount of data is embodied in block-diagram
descriptions. The initial observation often comes from genetic
experiments in which mutants lacking a given molecule exhibit
an interesting phenotype. As the molecule is characterized, its
interactors, upstream or downstream, are worked out. These
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observations add new molecules to the block diagram, and
often link it to known pathways. Experiments that knock out
specific molecules by genetic, molecular, or pharmacological
methods help in the working out of further details of the inter-
actions, such as the sign of the effect. By using genomic data-
bases it is now often possible to relate known pathways be-
tween species, and to fill in homologous pathway diagrams
fairly quickly.

The model abstraction of this immense amount of data is es-
sentially a listing of interacting molecules or pathways, togeth-
er with the sign of each interaction. Frequently this representa-
tion is expanded to include modulatory interactions where a
third molecule can modulate the interaction between two
others. Such data abstractions are sufficient to specify pathway
block diagrams. Clearly, models of the form of pathway block
diagrams are very concise descriptions of highly complex inter-
actions. As we discuss below, such models are the starting
point for any detailed description.

As is obvious, block-diagram models provide a limited range
of qualitative predictions. These are often simply a matter of
following the interaction diagram and predicting that removal
of an upstream molecule will eliminate an effect on a down-
stream one. These qualitative predictions can, however, be ex-
tremely important. For example, block-diagram models of sig-
naling networks often form the basis for designing knockouts
or pharmacological interventions that are predicted to have
specific effects. The key role of the NMDA receptor in learning
and memory, for example, was confirmed through knockouts
of specific receptor subtypes in specific regions of the hippo-
campus.[4]

An example of a topological model and its results are shown
in Figure 1a and b. This model deals with the obese gene and
the prediction that its protein product leptin would have a
target receptor in the hypothalamus. More than 50 years ago,
Kennedy hypothesized that the hypothalamus senses some
factor that provided it information about the body’s fat re-
serves, as a result of which the hypothalamus would regulate
food intake.[5] A critical clue about the factor that regulates
body weight came from Coleman’s finding in the 1970s that
recessive mutations in the mouse ob and db genes resulted in
obesity and diabetes.[6] Through his experiments Coleman con-
cluded that the blood-borne factor was encoded in the ob
gene and the receptor for this factor was encoded in the db
gene. It was only in 1994 that Friedman’s group identified and
characterized the ob gene and its product, leptin.[7] Tartaglia’s
group followed this up with the discovery of the leptin recep-
tor in 1995.[8] Here we see that Kennedy and Coleman’s word/
block diagrams led the way to identification of leptin and its
receptor.

In summary, block-diagram models encapsulate immense
amounts of information about the topology of signaling inter-
actions. Such models enable fundamental predictions about
causality in signaling events, and are the starting points for all
modeling analyses in signaling.

2.2 Systems models

Systems models are models that incorporate partial mechanis-
tic detail about signaling interactions. Such models mathemati-
cally represent the architecture of the system, and thus can
predict the general range of behavior that the system can
adopt. The information is at a level that facilitates mathemati-
cal and numerical analysis over a range of possible parameters.
For example, many such models specify the reaction scheme
of the system and may also include partial reaction rates.

Such information is typically represented in the model as a
set of differential or algebraic equations in which the specific
rates are free parameters over a certain plausible range.

Armed with this information, one can show, for example,
that under certain conditions the system will be stable, but in
other parameter ranges it might oscillate or flip into a different
state of activity (Figure 1c and d). Thus, even though such
models lack detailed kinetic and quantitative parameters they
still possess significant predictive power. The cell cycle is an ex-
ample of a system that has been extensively studied at the sys-
tems level.[9] Early models were essentially theoretical and had
abstract structures in which specific chemical reactions were
not modeled completely. For example, one version of this
model required only two equations and four kinetic parame-
ters to specify its behavior.[9] Although these models were
made before experimental data on system structure and kinet-
ics were available, they were capable of qualitatively describing
many aspects of in vivo and in vitro behavior. Tyson’s 1991
model had an oscillatory period from 10 to 50 min, whereas in
vivo the period for Xenopus cleavage cycles was shown to be
30 min[10] and the in vitro period was shown to be around
60 min.[11]

As illustrated by the cell cycle example, systems models are
able to capture the essential behavior of a system qualitatively
and to suggest directions for experiments to refine under-
standing of the system.

2.3 Semiquantitative models

Semiquantitative models are mechanistically the most ad-
vanced models currently available. The scope of such models
is typically at the level of biochemical representation of signal-
ing. More modern modeling efforts frequently go well beyond
this, and may incorporate cell biological, spatial, and even me-
chanical details of cellular function.

The experimental data incorporated into such models is ex-
tremely varied. It is, of course, a superset of the systems and
block-diagram representations. In addition to the genetic and
molecular biological specification of interactants and the iden-
tification of reaction mechanisms, there is an immense range
of kinetic and pharmacological techniques needed to parame-
terize models quantitatively. Test-tube biochemistry has a
prominent role in specifying rates, though this is increasingly
being supplanted by less precise but more sensitive measure-
ments based on specific antibodies, such as western blots.
High-resolution imaging methods are invaluable in determin-
ing localization and traffic of molecules, and such methods are
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often amenable to kinetic measurements on the timescale of
seconds. Surface plasmon resonance methods, though techni-
cally challenging, have great promise for providing high-quali-
ty kinetic parameters.

Once digested, this vast amount of data typically reduces to
just three model quantities : reaction schemes, rate constants,
and concentrations of molecules. In more advanced modeling
efforts the localization of molecules and possibly their trans-
port rates may be represented.

Figure 1. Scope of a model. a) Example of block-diagram/word model for obesity. Different components of the word model prediction were discovered subsequently,
as shown in purple and green. b) Prediction and experimental validation of obese phenotype. c) Example of a systems model for the cell cycle. The model represents
the role of cdc2 and cyclin in cell cycle progression as described by Tyson in 1991. d) Qualitative prediction of cell cycle fate made by the model based on levels of
M (Mitosis Promoting Factor or Complex of Cdc2 and Cyclin-p), the periodicity of which was later verified through experiments. e) Semiquantitative model for
MAPK proposed by Kholodenko in 2000, describing a negative feedback from MAPK-PP to MKKK activating reaction resulting in oscillations of dually phosphorylat-
ed and non-phosphorylated forms of MAPK. f) Oscillations in MAPK predicted by the model.
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Good quantitative information opens the way to extremely
detailed and specific predictions. Essentially, any experiment in
the system with a readout expressed as a concentration term
can be simulated. Time-series experiments are particularly chal-
lenging tests for simulation predictions, as these test both the
steady-state properties and the dynamics of the model. Often
the limiting point in making good predictions is precisely the
point at which the model runs out of experimental input. Such
situations are frequently the most productive interfaces be-
tween model and experiment.

The NF-kB system illustrates this point. NF-kB is a nuclear
transcriptional factor present in the cytoplasm. It has a large
number of activators and in response to specific activators it
selectively up-regulates different subset of genes. Although
some quantitative information on NF-kB’s interactions in the cy-
toplasm exists, it is much more difficult to measure nuclear pro-
tein activity. The presence of some amount of quantitative infor-
mation has allowed the construction of a model capable of pre-
dicting the cytoplasmic behavior and making semiquantitative
predictions with respect to nuclear localization of NF-kB.[12]

The predictive value conferred by semiquantitative modeling
often helps in refining theory and improving our understand-
ing of a system. An example is Kholodenko’s MAPK oscillatory
model (Figure 1e and f).[13] This modeling effort makes specific
predictions on the behavior of the MAPK biochemical pathway
in mammalian cells. The study shows through computation
modeling that the presence of a negative feedback loop in the
MAPK cascade allows the system to undergo sustained oscilla-
tions. There are some recent examples of oscillations in the
MAPK system: Akhthar etal.[14] and Duffield etal.[15] have shown
that some genes encoding components of the Ras/MAPK sig-
naling pathway do show oscillatory peaks, although these do
not match the model in the details of time-course and ampli-
tude.

Thus quantitative modeling efforts include extensive mecha-
nistic and kinetic experimental data, and in turn provide specif-
ic and testable predictions as well as the basis for better un-
derstanding of signaling events.

3. Classification of Current Models of
Signaling Pathways

The ideal model would, of course, be a superset of all the cate-
gories above. It would specify the identities of all the interact-
ing pathways, and would provide full chemical and kinetic de-
tails about each of the chemical steps. In addition, it would in-
clude information about the cellular localization of each event,
together with cell biological details such as trafficking and ge-
netic interactions. In other words, it would embody all the rele-
vant information about the system. Of course, such a model
can only be constructed with hindsight, when the system is al-
ready well understood. The most influential models are often
those that go out on a limb to predict biological phenomena
on the basis of decidedly incomplete data. In this study we do
not attempt to predict which models will eventually be seen in
this light. Instead we construct a somewhat subjective classifi-
cation based on the question of how currently known path-

ways would fare with regard to available experimental data.
We have addressed this issue by analyzing a somewhat biased
sample of 244 pathways for their prospects for being modeled.
The systems for analysis have been selected from entries in
BIOCARTA (http://www.biocarta.com/genes/index.asp) and from
our database of quantitative cellular signaling DOQCS[3] (http://
doqcs.ncbs.res.in). The use of these publicly accessible data-
bases already applies a certain level of sampling bias towards
fairly well known pathways. Clearly, by being included in such
databases, the pathways are already at least at the block-dia-
gram level. Nevertheless, the rather broad scope of BIOCARTA
gives us a useful starting sample for the analysis.

Experience with modeling suggests that different systems
have different kinds and amounts of experimental detail availa-
ble. Therefore, we have used a flexible and simple set of crite-
ria to classify them (Table 1). As described briefly in the table,
the information required to model a system includes:

1) Component connectivity or topological information. This is
the “bare bones” of the reaction connectivity between indi-
vidual elements of the proposed pathway.

Table 1. Different levels of interaction pathways based on availability of quanti-
tative information.

Model
level

Topological
detail

Cellular
location

Temporal
details

Structural
details

In vivo
kinetics

Test-tube
kinetics

Level 0:
Gold
standard

available available available available available available

This is essentially an unreachable standard for modeling and is likely to
remain so as further studies add more parameters required for full system
specification.

Level 1:
Blue
standard

available available available/
not
available

available/
not
available

available/
not
available

available

These are some of the best constrained models available, such as the E. coli
chemotaxis model, where almost all the components and most of their inter-
actions have been identified.

Level 2:
Green
standard

available available/
not
available

available/
not
available

available/
not
available

available/
not
available

available/
not
available

Most of the semiquantitative models at this level and the level below are ca-
pable of making systems-level predictions. Models at this level are also capa-
ble of making good mechanistic predictions.

Level 3:
Yellow
standard

available/
not
available

available/
not
available

not
available

not
available

not
available

available/
not
available

In these models most of the suspect interactions in the red model have been
eliminated and some test tube level kinetic details is available for a few of
the components.

Level 4:
Red
standard

available/
not
available

not
available

not
available

not
available

not
available

not
available

Models at this level are essentially collections of “interactions” between vari-
ous components of the system. These interactions themselves may be sus-
pect, they have no quantitative details available, and in most cases lack cellu-
lar context. They do, however, provide a probable overview of the global
structure or topology of the cell signaling networks.
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2) Cellular localization of components of the system. It is fre-
quently the case that localization data is unavailable even
when details of specifically interacting molecules are
known and their kinetic effects have been observed. Many
experimental results are of the form of blots or gene ex-
pression profiles from homogenized tissue samples. These
experimental techniques monitor populations of cells
rather than single cells, and so their ability to delineate in-
tracellular signaling pathways will be limited. A more de-
tailed model requires information on cellular localization of
key molecules.

3) Temporal dynamics of expression and activation of the
components. Current experimental approaches frequently
sample individual time points rather than the continuous
progression of signaling events. Temporal details are often
monitored only in systems with slow time-courses, such as
the circadian rhythm or the cell cycle; however, such data
is valuable in most models.

4) Structural details of the interacting components. In many
models of signaling pathways it is not known whether the
reactions are between freely moving components or be-
tween tethered or scaffolded molecules. Further, reactions
occurring between molecules in distinct compartments are
often poorly characterized, especially with regard to the
distribution of molecules between compartments. A more
detailed mechanistic model may need to incorporate these
features to represent the nuances of the reaction dynam-
ics.

5) Identification of physiologically accurate quantitative
values of each of the components. Old-fashioned “test-
tube” biochemistry is a good source of reaction rates,
which are very important to constrain a model. It is often
valuable to compare such rates with in vivo measurements
to obtain good parameters for models.

Using the availability of these parameters as a criterion for
classification, we have classified our sample of models into one
of five categories on a scale of biochemical exactitude. These
range from 0 for excellent models (currently unattainable) to 4
for very sketchy ones. The availability of parameters is based
on published literature associated with the system. Table 1
shows the color coding and the classification criteria. In the in-
terests of space, we describe only our criteria of classification,
but the pathways classified under this scheme are tabulated
and provided at our website (http://www.ncbs.res.in/~bhalla/
model_spectrum/index.html).

3.1. Model-classification results

We performed the above classification for 244 models, ranging
from block-diagram descriptions to very carefully quantified re-
action-level simulations. We stress that the classification com-
bines an assessment of the potential of a model for quantita-
tive modeling, based on available experimental data, as well as
its current status, based on published models. The purpose of
this classification is not to make any value judgment of the
models but only to identify the level of chemical exactitude in

these models. It is important to note that highly quantitative
models may or may not have a correspondingly high impact
in the future development in the field. Arguably, it is difficult
to compare models with different features addressing different
facets, so a predefined set of criteria are used for making
the comparison. The models are evaluated as explained in
Table 1 on a given set of parameters as well as on the
validity of predictions within the system and the advancement
made by the model. We first simply categorized models into
five levels. We then analyzed subfields of study to see how dif-
ferent fields were represented. We considered some of the ex-
perimental constraints on different model systems, and as-
sessed how this contributes to model development in that
area.

3.1.1 Levels of models: As expected, there are more models at
the block-diagram level than at the quantitative level. Al-
though it may be an artifact of our sample population, it is in-
teresting that the numbers of semiquantitative models
(levels 2 and 3) is potentially rather large, rather than being a
miniscule fraction of the level 4 models (Figure 2a). This is ex-
tremely encouraging from the systems biology viewpoint as it
indicates that even with current techniques we can advance
quantitative modeling in many subfields of biology. At the
same time, it is sobering that there are a miniscule number of
models that are “well quantified” by our classification scheme,
and essentially no excellent ones of level 0. It is therefore clear-
ly important to consider development of high-throughput
methods that would be capable of generating the kind of data
needed to bring models to this more quantitatively predictive
level.

3.1.2 Experimental constraints on modeling in different subfields:
We have loosely categorized model subfields into metabolic,
neuronal, immunological, and cell signaling. Analysis of the
classified data revealed several interesting trends in the types
of data characteristic of each field. Experimentally difficult
systems have limiting quantitative data, as expected, and
models made in these cases would fall into the very sketchy
or level 4 category. For example, brain-related disorders and
neurodegenerative disorders rarely have quantitative infor-
mation. Quite often the topological connectivity itself seems
to be incomplete in many cases. In contrast, disorders of
accessible systems, such as blood-clotting defects, have been
studied to a high level of quantitative detail (level 2), and
so a model of blood clotting defects with significant pre-
dictive capacity can be made. It is also interesting that though
brain disorders are poorly quantified, neuronal signaling
is rather well studied, especially at the synaptic level (Fig-
ure 2c).

A similar bias in data availability is seen in mammalian as
opposed to non-mammalian systems. Simpler non-mammalian
systems frequently have better quantitative data. This bias
could be because of ease of accessibility and a longer history
of using a non-mammalian experimental model. This is reflect-
ed in higher percentages of models of non-mammalian sys-
tems in levels 2 and 3, whereas mammalian models tend to be
sketchy and largely populate level 4 (Figure 2b).
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An interesting finding is that experimental access does not
necessarily result in quantitative data measurements. Though
immunology is a very important and well represented area,
the data available for model construction are mostly of level 3
or level 4 (Figure 2c). One possible historical reason for this is
that the approach adapted in immunological experiments is to
identify interactants and/or genetic relation between compo-
nents. The problem is compounded by redundancy and large
number of alternate interactions in signaling events in this
field.

Metabolic pathways have had a longer history of investiga-
tion than cellular signaling pathways. Furthermore, many met-
abolic pathway investigations are associated with studies to
probe for pharmacological intervention. This has apparently
pushed the field towards adopting a quantitative approach.
Consequently, most models of metabolic pathways are quite
biochemically detailed, at level 2 or level 3. In comparison, the
distribution of models of signaling pathways is broader (Fig-
ure 2d).

Overall, in our survey of models, we find that there are a
substantial number of pathways “ripe” for more quantitative
modeling. There is a surprisingly uneven distribution of model
types over different fields, and this is only partially accounted
for by experimental difficulties. There appears to be considera-
ble scope for more experimentation that may bring many
more pathways within reach of more quantitative models.

4. Evolution of Models

In view of the stated goals of
systems biology in producing
ever more accurate representa-
tions of biological systems, it is
interesting to follow the evolu-
tion of models in a specific sig-
naling pathway over time. Do
models really become better
over time? Can one trace the in-
fluence of models and experi-
ments on each other? Do the
models provide successive im-
provements in biological under-
standing? We chose the MAPK
signaling pathway to address
these issues, as it has been mod-
eled at successively greater
detail since the early 1990s, and
now boasts a greater prolifera-
tion of models than almost any
other signaling pathway
(Figure 3).

The MAPK cascade as we
know it today is a three-tiered
cascade of kinases: Raf!MEK!
MAPK (Figure 1e shows a gener-
ic MAPK cascade). It took several
years to resolve even this basic

topology of the cascade. As recently as 1990 it was not clear
whether the kinases in the cascade were sequentially or simul-
taneously activated.[16] A two-tiered ordered arrangement of
the kinases had been proposed by 1991,[17] and in the span of
two years from 1991 to 1993 the three-tiered core structure of
the MAPK cascade was identified.[18] Further refinements to the
topology were made by the discovery that the MAPK cascade
involved scaffold proteins.[19]

The first simulations of MAPK (level 3 models) were carried
out in 1996[20] in a kinetic model of MAPK demonstrating ultra-
sensitivity. This model was constrained by experimental data,
but contained approximations to the rates. In 1997, Ferrel and
Bhatt showed that MAPKK phosphorylates p42 MAPK by a
two-collision distributive mechanism rather than a single-colli-
sion processive mechanism.[21] This experimental model provid-
ed a mechanistic basis for understanding of how MAPK can
convert graded inputs into switch-like outputs. In the same
year, Burack and Sturgill showed through experiments and ki-
netic analysis of available data that the mechanism of ERK2 ac-
tivation by MEK1 in vitro is actually nonprocessive.[22] In 1998,
Ferrell and Machleder showed that the MAPK cascade is acti-
vated essentially in an all-or-none fashion during Xenopus
oocyte maturation.[23] This behavior was proposed to arise
from two known properties of the oocyte’s MAPK cascade:
positive feedback and the cascade’s intrinsic ultrasensitivity,
proposed in 1996 by Huang and Ferrell.

Figure 2. Classification and analysis of models in different levels. a) Distribution of 244 models over the five levels of
classification (see text and Table 1). b) Subdivision of models between mammalian and non-mammalian systems.
Non-mammalian systems have a greater proportion of quantitative models. c) Distribution of models in different sys-
tems: immunological, neurobiological, and others. Neurobiological models tend to be better quantified. d) Subdivision
of models between signaling and metabolic models. Metabolic models tend to be better quantified.
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Following this initial set of models, the next phase began to
analyze additional components of the MAPK cascade, and to
explore its dynamics in detail.

In 1999, Bhalla and Iyengar used simulations based on kinet-
ic data available at the time to propose that the MAPK cascade
might participate in a bistable feedback loop.[24] This MAPK
model was one of the earliest to incorporate EGF activation in
its description. In the same year, Kholodenko modeled the EGF
signal transduction from the receptor to the RasGTPase.[25] In
2000 Kholodenko proposed an oscillatory mechanism in a
MAPK cascade model.[13] Levchenko explored effects of scaf-
folding on the MAPK cascade, and his model proposed that
scaffold proteins may biphasically affect the levels of MAPK sig-
naling and thereby reduce its threshold properties.[26] Bright-
man and Fell showed through quantitative modeling that
feedback inhibition of the MAPK cascade determined the dura-
tion of cascade activation.[27] A further study on MAPK system
dynamics by Asthagiri and Lauffenberger showed that nega-
tive feedback could enhance an upstream signal in the MAPK
cascade.[28]

In the most recent phase of modeling, two trends are appa-
rent. Firstly, recent models incorporate still further cell biologi-
cal detail, including receptor traffic and transcriptional control.
Secondly, recent studies have begun to utilize both experi-
ments and simulations in an integrative fashion. We mention
some of these studies in Figure 3. Models have incorporated
various kinds of cell biological detail. Schoeberl etal. have
modeled the effects on MAPK due to receptor internalization
of EGF receptors.[29] In 2002, Bhalla etal. combined experiments
and modeling to support MAPK involvement in a bistable
feedback loop.[30] This study also considered transcriptional ac-
tivation of MKP-1 as an important component of the history
dependence of the cellular response. Swain and Siggia mod-
eled the multisite phosphorylation of MAPK and suggested

that it acts to improve signaling specificity.[31] In a theoretical
study, Somsen etal. showed that scaffolding could induce se-
lectivity in different MAPK modules even if they shared the
same kinases at some levels in the cascade.[32] In one of the
largest models of the MAPK cascade yet attempted, Resat etal.
simulated the differential kinetics of EGFR activation by EGF
and TGF-alpha using a large multi-compartment spatio-tempo-
ral model. In the same study they also provided experimental
support for the model predictions about differential receptor
activation.[33] In 2003, Hatakeyama etal. modeled dual regula-
tion of heregulin-induced ErbB signaling.[34] This work was
based on Schoeberl’s 2002 model and also involved some ex-
perimental verification. Xiong etal. showed in 2003 that a posi-
tive feedback loop between activation of MAP kinase (MAPK)
and the cell cycle regulator cdc2 is responsible for ensuring
the self-supporting decision of the oocyte to mature.[35] This
experimental work verified this proposal put forward by the
1998 Ferrell and Machleder model. In 2003, Gong etal. mod-
eled redundancy and dominance of the Shc-dependent path-
way during MAPK activation.[36] Gong based this simulation
work on Schoeberl’s 2002 model and also on the 1999 and
2000 Kholodenko model. In 2004 Markevich etal. showed by
kinetic analysis that bistability and hysteresis are inherent
properties of multi-step phosphorylation-dephosphorylation
cycles.[37] They proposed that this might cause a MAPK cascade
to exhibit bistable behavior even in the absence of feedback
loops. In 2004, Chapman and Asthagiri showed through net-
work component analysis that amplification, input potency,
and dynamic range of output in the MAPK cascade may be
tuned by manipulating module components.[38]

There are several interesting features that emerge from our
analysis of the lineage of these models. Firstly, there is a very
strong evolutionary dependence on older models. This is even
more striking when one compares rate constants across

Figure 3. Evolution of modeling, with modeling in MAPK taken as an example. Models are arranged chronologically from left to right by the year of their publica-
tion. Each model considered is represented by a box, and the color in the box is indicative of the level of detail incorporated in the model. The classification of the
levels is in accordance with the criteria detailed in Table 1 (also see text). The boxes are color coded in increasing order of detail, red being the lowest and blue
being the highest. The icon at the base of the box indicates the approach adopted by the study for modeling. The connections to each model indicates important
source of starting information. All connections originating from a single model are represented by a single color.
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models (data not shown). It is clearly a field where cross-ferti-
lization is important and effective. Secondly, models get
bigger, not just better. The scope of some of the recent
models extends from the cell surface to the nucleus, and in-
cludes spatial detail in-between. The kinds of questions ad-
dressed by such models are correspondingly more biologically
complete. Another interesting observation that can be seen in
Figure 3 is that although many of these models share common
information sources, they are not all given the same rating.
The following example illustrates this point. Two simulation
models in 2000 explored distinct, novel aspects of the MAPK
cascade. Levchenko’s model was one of the first models to
state a theoretical quantitative model of the MAPK cascade
with a generic scaffold protein. Kholodenko’s model proposed
a new behavior for the MAPK cascade based on well defined
existing properties of the MAPK cascade: namely, negative
feedback and ultrasensitivity. Though they have similar sources
of starting information, the Kholodenko model is rated as
more quantitatively defined. The Levchenko model introduced
a new generic component and is thus chemically less well de-
fined than Kholodenko’s model, which explored new behavior
of the system. There is no new component introduced into
Kholodenko’s reaction scheme, and hence it is chemically
better defined, which reflects as a higher rating. However, one
should not confuse the chemical exactness used in this classifi-
cation with the impact the model may have on future research
in the field. Indeed, it could be argued that one of the key
roles of such modeling is to explore the effects of novel or
speculative biological interactions.

A more subtle observation is that the environment of previ-
ous models sets a ratchet for the quantitative precision of new
studies. The general color in the figure shifts from red (low
quantization) toward blue (very good quantization). This may
seem like an inevitable outcome of refinement of models, until
one recognizes that new models also incorporate additional in-
teractions, spatial detail, and stochasticity. Given that each of
these additional attributes needs characterization, it is by no
means a given that larger models should also have better
parameters.

Finally, this chart focuses on modeling studies rather than
the larger experimentally driven context of the field. Neverthe-
less, even within this limited set of modeling studies, a clear in-
tertwining of experiments with the models is evident. This has
become explicit in recent years with several combined model/
experiment studies.

Thus, over a span of some 14 years, modeling efforts in the
MAPK system have evolved from topological models to ex-
tremely detailed studies of specific hypotheses with close ref-
erence to experiments. The questions involved have changed
from broad issues of signal flow to specific tests of the nature
of feedback and other key systems biology attributes of the
cascade. While biological experiments remain the arbiter of all
these studies, it seems likely that the conceptual level of the
questions being posed owes a great deal to modeling.

5. Biological Complexity and Modeling

Models help to handle complexity in at least three major ways:
by organizing masses of data, by predictions in complex situa-
tions where intuition fails, and ultimately, as a tool to improve
understanding. In this survey we have considered 244 models,
most of which do all of these things. We conclude with some
illustrations of the use of models to handle complexity in bio-
logical signaling pathways.

Data organization is obviously the territory of databases,
and the management and analysis of biological data is now an
entire field in itself. This is variously referred to as bioinformat-
ics, or one or other form of the much-abused suffix “omics”.
Models play a very important complementary role to the con-
ventional database representations of signaling.[39] In particular,
with increasing model detail, models can provide not just a
parts list, but a data representation with functional capabilities
built in. Even at the block-diagram level, the flow of informa-
tion in a signaling cascade is evident. At the systems level,
models can be used to identify gaps in the original data that
are needed to explain system behavior.[9, 40] At the quantitative
level, the model embodies the state of knowledge not just
about the structure of the signaling pathway, but also about
its dynamics and behavior under many sets of conditions.[41]

These capabilities clearly go far beyond the basic search-and-
link features of most databases in representing the function of
complex signaling. Modeling also serves as a means for check-
ing the completeness and consistency of the different sets of
information available for a system.

Prediction of system function is the next step for models.
For simple signaling it is probably not critical to have a model
representation. For example, the classical cyclic AMP signaling
cascade is a linear pathway with some amplification. As one in-
corporates additional data, such as receptor down-regulation,
turnover, alternative isoforms, and signal cross-talk, even this
simple pathway needs at least a block diagram to predict what
might happen in response to an input or modulator. A systems
level description improves on this by predicting parameter
ranges in which different kinds of behavior may occur. With
quantitative models one can close the loop with experiment,
and specifically predict outcomes of manipulations. This is es-
pecially valuable when such outcomes are non-intuitive.[23,42] A
particularly powerful illustration of this is when one can distin-
guish between physiological outcomes of competing hypothe-
ses embodied as models.[26] Models of complex signaling sys-
tems are therefore extremely important tools to supplement
human intuition in trying to predict how such systems will
behave.

Understanding of complex signaling is where we propose
that models will have their most fundamental impact. Quite
often such models propose concepts far ahead of any experi-
mental validation.[13,26] Notwithstanding the accuracy of such
proposals, they make significant contributions to conceptual
advancement. Even at the block-diagram level, systems biolo-
gists can identify functional modules that allow one to replace
a jumble of pathways with an abstracted black box[43] With the
systems level model to hand, the mathematical form of the
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model can reveal similarity with other well understood systems
from engineering or physics. For example, the form of the
feedback circuit in bacterial chemotaxis adaptation matches
that of a perfectly adapting integral feedback control circuit in
engineering.[44] Finally, with quantitative models, one can not
only recognize such functional modules and test their opera-
tion,[30] but even design signaling systems with desired proper-
ties.[45]

We propose that this enumeration of the roles of different
levels of modeling is not merely a classification, but instead a
framework for the emerging field of systems biology. How
does one understand these enormously complex biological
systems? Going by the spectrum of models described above,
we would propose that a first pass is to define the interactions
(block-diagram descriptions), the second pass is to define
mechanisms (systems descriptions), and the third pass is to
quantify each step (quantitative specifications). As the level of
description is refined, models go from being completeness
checks, to doing quality control, to providing predictions and a
deeper understanding. Our survey, even though biased to-
wards already developed descriptions, suggests that much of
the field is currently at a “first pass” level. From this perspec-
tive, there are clear further steps to pursue for the develop-
ment of experimental and computational tools to tackle the
second and third levels.

6. Summary

In this review we have conducted a survey of approximately
250 models of cellular signaling from the block-diagram level
up to quantitative models. We assess the current level of rep-
resentation of each model and find that a significant fraction
of systems are sufficiently characterized to be amenable to
quantitative modeling. We find that certain fields, such as met-
abolic analysis, have been very successful in bringing quantita-
tive modeling techniques to their systems. Other areas, such as
immunology, appear to be underrepresented among quantita-
tive models, especially given the experimental strength in the
area. It is tempting to speculate that the recent interest in sys-
tems biology may change this mismatch.

As a specific example of model evolution, we have traced
the family tree of models of the MAPK signaling cascade. We
observed several phases in the evolution of such models, from
sketchy qualitative block diagrams, through a range of early
models outlining the basic properties of the cascade, to an ex-
plosion of models using the cascade in the context of larger
circuits. A remarkable synergy between models and experi-
ments is evident in this family tree. If this history anticipates
model development in other systems, it seems likely that com-
binations of experiments and models will be a strong driving
force in the area. We propose that this example suggests a
framework for the evolution of the field of systems biology as
a whole, through staged refinement of biological understand-
ing. Our survey suggests that the field is still finding its feet in
defining the most basic block diagrams of complex biological
systems.

Overall, our study is a snapshot of the development of a
young and vibrant field. The models we describe are still play-
ing catch-up with the flood of high-throughput biological
data,[46] but they are already able to set a bar for the quality of
such data that will be needed for useful quantification of sig-
naling.[47] Given the rapid pace of development in the area, it
will be very interesting to compare this snapshot with the
state of the field in coming years.
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