MAPK cascade in solution (no scaffold)
Description |
---|
This model describes a basic 3- stage Mitogen Activated Protein Kinase (MAPK) cascade in solution. This cascade is typically expressed as RAF= =>MEK==>MAPK (alternative forms are K3==>K2==> K1 and KKK==>KK==>K) . The input signal is RAFK (RAF Kinase) and the output signal is MAPKpp ( doubly phosphorylated form of MAPK) . RAFK phosphorylates RAF once to RAFp. RAFp, the phosphorylated form of RAF induces two phoshporylations of MEK, to MEKp and MEKpp. MEKpp, the doubly phosphorylated form of MEK, induces two phosphorylations of MAPK to MAPKp and MAPKpp. |
Rate constant | Reaction |
---|---|
a10 = 5. | MAPKPH + MAPKpp -> MAPKppMAPKPH |
a1 = 1. | RAF + RAFK -> RAFRAFK |
a2 = 0.5 | RAFp + RAFPH -> RAFpRAFPH |
a3 = 3.3 | MEK + RAFp -> MEKRAFp |
a4 = 10. | MEKp + MEKPH -> MEKpMEKPH |
a5 = 3.3 | MEKp + RAFp -> MEKpRAFp |
a6 = 10. | MEKPH + MEKpp -> MEKppMEKPH |
a7 = 20. | MAPK + MEKpp -> MAPKMEKpp |
a8 = 5. | MAPKp + MAPKPH -> MAPKpMAPKPH |
a9 = 20. | MAPKp + MEKpp -> MAPKpMEKpp |
d10 = 0.4 | MAPKppMAPKPH -> MAPKPH + MAPKpp |
d1 = 0.4 | RAFRAFK -> RAF + RAFK |
d2 = 0.5 | RAFpRAFPH -> RAFp + RAFPH |
d3 = 0.42 | MEKRAFp -> MEK + RAFp |
d4 = 0.8 | MEKpMEKPH -> MEKp + MEKPH |
d5 = 0.4 | MEKpRAFp -> MEKp + RAFp |
d6 = 0.8 | MEKppMEKPH -> MEKPH + MEKpp |
d7 = 0.6 | MAPKMEKpp -> MAPK + MEKpp |
d8 = 0.4 | MAPKpMAPKPH -> MAPKp + MAPKPH |
d9 = 0.6 | MAPKpMEKpp -> MAPKp + MEKpp |
k10 = 0.1 | MAPKppMAPKPH -> MAPKp + MAPKPH |
k1 = 0.1 | RAFRAFK -> RAFK + RAFp |
k2 = 0.1 | RAFpRAFPH -> RAF + RAFPH |
k3 = 0.1 | MEKRAFp -> MEKp + RAFp |
k4 = 0.1 | MEKpMEKPH -> MEK + MEKPH |
k5 = 0.1 | MEKpRAFp -> MEKpp + RAFp |
k6 = 0.1 | MEKppMEKPH -> MEKp + MEKPH |
k7 = 0.1 | MAPKMEKpp -> MAPKp + MEKpp |
k8 = 0.1 | MAPKpMAPKPH -> MAPK + MAPKPH |
k9 = 0.1 | MAPKpMEKpp -> MAPKpp + MEKpp |
Variable | IC | ODE |
---|---|---|
MAPK | 0.3 | MAPK'[t] == d7*MAPKMEKpp[t] + k8*MAPKpMAPKPH[t] - a7*MAPK[t]*MEKpp[t] |
MAPKMEKpp | 0 | MAPKMEKpp'[t] == -(d7*MAPKMEKpp[t]) - k7*MAPKMEKpp[t] + a7*MAPK[t]*MEKpp[t] |
MAPKp | 0 | MAPKp'[t] == k7*MAPKMEKpp[t] - a8*MAPKp[t]*MAPKPH[t] + d8*MAPKpMAPKPH[t] + d9*MAPKpMEKpp[t] + k10* MAPKppMAPKPH[t] - a9*MAPKp[t]*MEKpp[t] |
MAPKPH | 0.3 | MAPKPH'[t] == -(a8*MAPKp[t]*MAPKPH[t]) + d8*MAPKpMAPKPH[ t] + k8*MAPKpMAPKPH[t] - a10*MAPKPH[t]*MAPKpp[t] + d10*MAPKppMAPKPH[t] + k10*MAPKppMAPKPH[t] |
MAPKpMAPKPH | 0 | MAPKpMAPKPH'[t] == a8*MAPKp[t]*MAPKPH[t] - d8* MAPKpMAPKPH[t] - k8*MAPKpMAPKPH[t] |
MAPKpMEKpp | 0 | MAPKpMEKpp'[t] == -(d9*MAPKpMEKpp[t]) - k9*MAPKpMEKpp[t] + a9*MAPKp[t]*MEKpp[t] |
MAPKpp | 0 | MAPKpp'[t] == k9*MAPKpMEKpp[t] - a10*MAPKPH[t]*MAPKpp[t] + d10*MAPKppMAPKPH[t] |
MAPKppMAPKPH | 0 | MAPKppMAPKPH'[t] == a10*MAPKPH[t]*MAPKpp[t] - d10* MAPKppMAPKPH[t] - k10*MAPKppMAPKPH[t] |
MEK | 0.2 | MEK'[t] == k4*MEKpMEKPH[t] + d3*MEKRAFp[t] - a3*MEK[t]*RAFp[t] |
MEKp | 0 | MEKp'[t] == -(a4*MEKp[t]*MEKPH[t]) + d4*MEKpMEKPH[t] + k6*MEKppMEKPH[t] + d5*MEKpRAFp[t] + k3*MEKRAFp[ t] - a5*MEKp[t]*RAFp[t] |
MEKPH | 0.2 | MEKPH'[t] == -(a4*MEKp[t]*MEKPH[t]) + d4*MEKpMEKPH[t] + k4*MEKpMEKPH[t] - a6*MEKPH[t]*MEKpp[t] + d6* MEKppMEKPH[t] + k6*MEKppMEKPH[t] |
MEKpMEKPH | 0 | MEKpMEKPH'[t] == a4*MEKp[t]*MEKPH[t] - d4*MEKpMEKPH[t] - k4*MEKpMEKPH[t] |
MEKpp | 0 | MEKpp'[t] == d7*MAPKMEKpp[t] + k7*MAPKMEKpp[t] + d9*MAPKpMEKpp[t] + k9*MAPKpMEKpp[t] - a7*MAPK[t]* MEKpp[t] - a9*MAPKp[t]*MEKpp[t] - a6*MEKPH[t]*MEKpp[t] + d6*MEKppMEKPH[t] + k5*MEKpRAFp[t] |
MEKppMEKPH | 0 | MEKppMEKPH'[t] == a6*MEKPH[t]*MEKpp[t] - d6*MEKppMEKPH[ t] - k6*MEKppMEKPH[t] |
MEKpRAFp | 0 | MEKpRAFp'[t] == -(d5*MEKpRAFp[t]) - k5*MEKpRAFp[t] + a5*MEKp[t]*RAFp[t] |
MEKRAFp | 0 | MEKRAFp'[t] == -(d3*MEKRAFp[t]) - k3*MEKRAFp[t] + a3*MEK[t]*RAFp[t] |
RAF | 0.4 | RAF'[t] == -(a1*RAF[t]*RAFK[t]) + k2*RAFpRAFPH[t] + d1*RAFRAFK[t] |
RAFK | 0.1 | RAFK'[t] == -(a1*RAF[t]*RAFK[t]) + d1*RAFRAFK[t] + k1*RAFRAFK[t] |
RAFp | 0 | RAFp'[t] == d5*MEKpRAFp[t] + k5*MEKpRAFp[t] + d3*MEKRAFp[t] + k3*MEKRAFp[t] - a3*MEK[t]*RAFp[t] - a5*MEKp[t]*RAFp[t] - a2*RAFp[t]*RAFPH[t] + d2* RAFpRAFPH[t] + k1*RAFRAFK[t] |
RAFPH | 0.3 | RAFPH'[t] == -(a2*RAFp[t]*RAFPH[t]) + d2*RAFpRAFPH[t] + k2*RAFpRAFPH[t] |
RAFpRAFPH | 0 | RAFpRAFPH'[t] == a2*RAFp[t]*RAFPH[t] - d2*RAFpRAFPH[t] - k2*RAFpRAFPH[t] |
RAFRAFK | 0 | RAFRAFK'[t] == a1*RAF[t]*RAFK[t] - d1*RAFRAFK[t] - k1*RAFRAFK[t] |
Generated by Cellerator Version 1.4.3 (6-March-2004) using Mathematica 5.0 for Mac OS X (November 19, 2003), March 6, 2004 12:18:07, using (PowerMac, PowerPC,Mac OS X,MacOSX,Darwin)
author=B.E.Shapiro
This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2010 The BioModels.net Team.
For more information see the terms of use
.
To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.
- Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties.
- A Levchenko, J Bruck, P W Sternberg
- Proceedings of the National Academy of Sciences of the United States of America , 5/ 2000 , Volume 97 , Issue 11 , pages: 5818-5823 , PubMed ID: 10823939
- Division of Engineering and Applied Science and Division of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA. andre@paradise.caltech.edu
- In addition to preventing crosstalk among related signaling pathways, scaffold proteins might facilitate signal transduction by preforming multimolecular complexes that can be rapidly activated by incoming signal. In many cases, such as mitogen-activated protein kinase (MAPK) cascades, scaffold proteins are necessary for full activation of a signaling pathway. To date, however, no detailed biochemical model of scaffold action has been suggested. Here we describe a quantitative computer model of MAPK cascade with a generic scaffold protein. Analysis of this model reveals that formation of scaffold-kinase complexes can be used effectively to regulate the specificity, efficiency, and amplitude of signal propagation. In particular, for any generic scaffold there exists a concentration value optimal for signal amplitude. The location of the optimum is determined by the concentrations of the kinases rather than their binding constants and in this way is scaffold independent. This effect and the alteration of threshold properties of the signal propagation at high scaffold concentrations might alter local signaling properties at different subcellular compartments. Different scaffold levels and types might then confer specialized properties to tune evolutionarily conserved signaling modules to specific cellular contexts.
Submitter of this revision: Lucian Smith
Curator: Lucian Smith
Metadata information
isDescribedBy (1 statement)
isDerivedFrom (3 statements)
hasTaxon (1 statement)
isVersionOf (1 statement)
isHomologTo (1 statement)
hasProperty (1 statement)
Connected external resources