This model is described in the article:
Abstract:
Many molecular chaperones are also known as heat shock proteins because they are synthesised in increased amounts after brief exposure of cells to elevated temperatures. They have many cellular functions and are involved in the folding of nascent proteins, the re-folding of denatured proteins, the prevention of protein aggregation, and assisting the targeting of proteins for degradation by the proteasome and lysosomes. They also have a role in apoptosis and are involved in modulating signals for immune and inflammatory responses. Stress-induced transcription of heat shock proteins requires the activation of heat shock factor (HSF). Under normal conditions, HSF is bound to heat shock proteins resulting in feedback repression. During stress, cellular proteins undergo denaturation and sequester heat shock proteins bound to HSF, which is then able to become transcriptionally active. The induction of heat shock proteins is impaired with age and there is also a decline in chaperone function. Aberrant/damaged proteins accumulate with age and are implicated in several important age-related conditions (e.g. Alzheimer's disease, Parkinson's disease, and cataract). Therefore, the balance between damaged proteins and available free chaperones may be greatly disturbed during ageing. We have developed a mathematical model to describe the heat shock system. The aim of the model is two-fold: to explore the heat shock system and its implications in ageing; and to demonstrate how to build a model of a biological system using our simulation system (biology of ageing e-science integration and simulation (BASIS)).
This model is hosted on BioModels Database and identified by: BIOMD0000000091.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication for more information.
- Modelling the actions of chaperones and their role in ageing.
- Carole J Proctor, Csaba Soti, Richard J Boys, Colin S Gillespie, Daryl P Shanley, Darren J Wilkinson, Thomas B L Kirkwood
- Mechanisms of ageing and development , 1/ 2005 , Volume 126 , Issue 1 , pages: 119-131 , PubMed ID: 15610770
- Henry Wellcome Laboratory for Biogerontology Research, School of Clinical and Medical Sciences-Gerontology, University of Newcastle, Newcastle upon Tyne NE4 6BE, UK. c.j.proctor@ncl.ac.uk
- Many molecular chaperones are also known as heat shock proteins because they are synthesised in increased amounts after brief exposure of cells to elevated temperatures. They have many cellular functions and are involved in the folding of nascent proteins, the re-folding of denatured proteins, the prevention of protein aggregation, and assisting the targeting of proteins for degradation by the proteasome and lysosomes. They also have a role in apoptosis and are involved in modulating signals for immune and inflammatory responses. Stress-induced transcription of heat shock proteins requires the activation of heat shock factor (HSF). Under normal conditions, HSF is bound to heat shock proteins resulting in feedback repression. During stress, cellular proteins undergo denaturation and sequester heat shock proteins bound to HSF, which is then able to become transcriptionally active. The induction of heat shock proteins is impaired with age and there is also a decline in chaperone function. Aberrant/damaged proteins accumulate with age and are implicated in several important age-related conditions (e.g. Alzheimer's disease, Parkinson's disease, and cataract). Therefore, the balance between damaged proteins and available free chaperones may be greatly disturbed during ageing. We have developed a mathematical model to describe the heat shock system. The aim of the model is two-fold: to explore the heat shock system and its implications in ageing; and to demonstrate how to build a model of a biological system using our simulation system (biology of ageing e-science integration and simulation (BASIS)).
Submitter of this revision: Lucian Smith
Curator: Lucian Smith
Metadata information
isDescribedBy (1 statement)
hasTaxon (1 statement)
isVersionOf (3 statements)
Gene Ontology response to heat
Gene Ontology chaperone mediated protein folding requiring cofactor
hasVersion (3 statements)
Human Disease Ontology Parkinson's disease
Human Disease Ontology cataract
hasProperty (1 statement)
Connected external resources