Please note that we have stopped the regular imports of Gene Expression Omnibus (GEO) data into ArrayExpress. This may not be the latest version of this experiment.

E-GEOD-8559 - S288c Quiescent and Non-quiescent replicates

Submitted on 22 July 2007, released on 27 May 2010, last updated on 2 May 2014
Saccharomyces cerevisiae
Samples (40)
Array (1)
Protocols (6)
Cells in glucose-limited Saccharomyces cerevisiae cultures differentiate into quiescent (Q) and non-quiescent (NQ) fractions prior to entering stationary phase. To identify genes involved in this differentiation, Q and NQ cells from 101 deletion-mutant strains were tested for viability and reproductive capacity. Twenty-one mutants were identified, including 7 that affected reproductive capacity of both cell types. Thirteen affected only Q or NQ cells, indicating significant differentiation of these cell types. doa4 strains, lacking ubiquitin hydrolase, affected viability and reproductive capacity in both cell types. More than 1300 mRNAs differentiating Q and NQ cell fractions were identified by microarray analysis. Gene-ontology analysis of Q-cell mRNAs showed significant increases in protein-encoding mRNAs involved in membrane maintenance, oxidative stress response, and signal transduction. NQ-cell mRNAs encode proteins involved in Ty-element transposition and DNA recombination, consistent with apoptosis in these cells. Consistent with preparation for rapid response to environmental stimuli, approximately 2000 protease-labile mRNAs were identified in Q cells. The differentiation of these cell types and the ability of genes to selectively affect the survival of Q or NQ cells in yeast are relevant to chronological aging, cell-cycle, genome-evolution, and stem-cell research and provides insight into complex responses that even simple organisms have to starvation. 10 replicates per cell-type. Channel 1 (Cy3) was the control of mixture of exponential and stationary phase cells. Channel 2 (Cy5) was the experimental cell-types of wild-type strain S288c.
Experiment type
unknown experiment type 
Sushmita Roy <>, Anthony D Aragon, Margaret Werner-Washburne
Characterization of differentiated quiescent and nonquiescent cells in yeast stationary-phase cultures. Aragon AD, Rodriguez AL, Meirelles O, Roy S, Davidson GS, Tapia PH, Allen C, Joe R, Benn D, Werner-Washburne M.
Investigation descriptionE-GEOD-8559.idf.txt
Sample and data relationshipE-GEOD-8559.sdrf.txt
Raw data (1)
Processed data (1)
Array designA-GEOD-5626.adf.txt