E-GEOD-58389 - Cyclic mechanical stretch-induced gene expression

Released on 11 June 2014, last updated on 14 June 2014
Homo sapiens
Samples (40)
Array (1)
Protocols (7)
With gene expression profiling it was aimed to identify the differentially expressed genes associated with the regulation of the cytoskeleton to investigate the stretch-induced cell alignment mechanism. A whole genome microarray based analysis of the stretch-induced gene expression changes was done. Gene expression was measured at the beginning of the alignment process showing first reoriented cells after 5 h stretching and at the end after 24 h, where nearly all cells are aligned. Cyclic mechanical stretching of cells results in cellular alignment perpendicular to the stretch direction regulating cellular response. This stress response is assumed to be an adaptation mechanism to reduce extensive stretching but also acts as architectural restructuring changing performance and biomechanics of the tissue. Gene expression profiling of control vs. stretched primary human dermal fibroblasts after 5 h and 24 h demonstrated the regulation of differentially expressed genes associated with metabolism, differentiation and morphology. Primary human dermal fibroblasts from ten donors were cultured on Bioflex culture plates and stretched for 5h and 24 h or left untreated to avoid changes according to cell culturing. Each of the subject provided 4 samples (control/treated and 5hrs/24hrs) resulting in 40 samples total.
Experiment type
transcription profiling by array