E-GEOD-52136 - Effect of Aid deletion on the global DNA methylation status of iPS cells

Released on 10 April 2014, last updated on 1 June 2014
Mus musculus
Samples (14)
Protocols (4)
It has been shown that DNA demethylation has a pivotal role in the generation of induced pluripotent stem (iPS) cells. However, the underlying mechanism is still unclear. Previous reports indicated that activation-induced cytidine deaminase (Aid) is involved in DNA demethylation in several developmental processes and cell fusion-mediated reprogramming. Based on the reports, we hypothesized that Aid may be involved in DNA demethylation during the iPS cell generation. In this study, we examined the function of Aid in iPS cell generation using Aid knockout (Aid-/-) mice expressing a GFP reporter under the control of a pluripotent stem cell marker, Nanog. By the introduction of Oct3/4, Sox2, Klf4 and c-Myc, Nanog-GFP positive iPS cells could be generated from the fibroblasts and primary B cells of Aid-/- mice. The Aid-/- iPS cells showed normal proliferation and gave rise to chimeras, indicating their capacity for self-renewal and pluripotency. The comprehensive DNA methylation analysis by MBD-sequening demonstrated that there were only a few differences between Aid+/+ and Aid-/- iPS cells. Aid+/+ and Aid-/- iPS colonies were generated from Aid+/+ and Aid-/- MEFs and picked up mechanically. The clones were passaged four times on feeder cells and two times on gelatin-coated dishes to exclude the contamination of feeder cells. Subsequently, the genome was isolated. Four Aid+/+ iPS cell clones and four Aid-/- iPS cell clones were compared. To confirm the validity of MBD-sequencing, four Aid+/+ iPS cell clones were compared with three ES cell clones or three Aid+/+ MEFs.
Experiment type
methylation profiling by high throughput sequencing 
Exp. designProtocolsVariablesProcessedSeq. reads
Investigation descriptionE-GEOD-52136.idf.txt
Sample and data relationshipE-GEOD-52136.sdrf.txt
Processed data (1)E-GEOD-52136.processed.1.zip