Please note that we have stopped the regular imports of Gene Expression Omnibus (GEO) data into ArrayExpress. This may not be the latest version of this experiment.

E-GEOD-47064 - Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia magna

Status
Released on 31 December 2013, last updated on 3 June 2014
Organism
Daphnia magna
Samples (24)
Array (1)
Protocols (7)
Description
Nanowires (NWs), high-aspect-ratio nanomaterials, are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from nanoparticles. We carried out a comprehensive evaluation of the physicochemical stability of four silver nanowires (AgNWs) of two sizes and coatings and their toxicity to Daphnia magna. Inorganic aluminum-doped silica coatings were less effective than organic poly(vinyl pyrrolidone) coatings at preventing silver oxidation or Ag+ release and underwent a significant morphological transformation within 1 h following addition to low ionic strength Daphnia growth media. All AgNWs were highly toxic to D. magna but less toxic than ionic silver. Toxicity varied as a function of AgNW dimension, coating, and solution chemistry. Ag+ release in the media could not account for observed AgNW toxicity. Single-particle inductively coupled plasma mass spectrometry distinguished and quantified dissolved and nanoparticulate silver in microliter-scale volumes of Daphnia magna hemolymph with a limit of detection of approximately 10 ppb. The silver levels within the hemolymph of Daphnia exposed to both Ag+ and AgNW met or exceeded the initial concentration in the growth medium, indicating effective accumulation during filter feeding. Silver-rich particles were the predominant form of silver in hemolymph following exposure to both AgNWs and Ag+. Scanning electron microscopy imaging of dried hemolymph found both AgNWs and silver precipitates that were not present in the AgNW stock or the growth medium. Both organic and inorganic coatings on the AgNW were transformed during ingestion or absorption. Pathway, gene ontology, and clustering analyses of gene expression response indicated effects of AgNWs distinct from ionic silver on Daphnia magna. Four replicates each of five toxicant exposure groups of ~20 animals and four replicates of control, unexposed animals. Each control was compared to each exposed data set for a total of 16 comparisons per chemical condition.
Experiment type
transcription profiling by array 
Contacts
Leona Dance Scanlan <scanlan.leona@gmail.com>, Abderrahmane Tagmount, Alexandre V Loguinov, Benjamin Gilbert, Christine Tran, Christopher D Vulpe, Christopher P Higgins, Daniel T Nowinski, Don Pham, Francesco Falciani, James F Ranville, Leona D Scanlan, Nadeeka Karunaratne, Pauline Luong, Philipp Antczak, Robert B Reed, Shaul Aloni, Xin Xin Lin
Citation
Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia magna. Scanlan LD, Reed RB, Loguinov AV, Antczak P, Tagmount A, Aloni S, Nowinski DT, Luong P, Tran C, Karunaratne N, Pham D, Lin XX, Falciani F, Higgins CP, Ranville JF, Vulpe CD, Gilbert B. , PMID:24099093
MIAME
PlatformsProtocolsVariablesProcessedRaw
Files
Investigation descriptionE-GEOD-47064.idf.txt
Sample and data relationshipE-GEOD-47064.sdrf.txt
Raw data (1)E-GEOD-47064.raw.1.zip
Processed data (1)E-GEOD-47064.processed.1.zip
Additional data (1)E-GEOD-47064.additional.1.zip
Array designA-GEOD-16579.adf.txt
Links