Please note that we have stopped the regular imports of Gene Expression Omnibus (GEO) data into ArrayExpress. This may not be the latest version of this experiment.

E-GEOD-40940 - Natural variation of transcriptional networks in Arabidopsis thaliana in response to salt stress

Status
Released on 1 January 2014, last updated on 2 June 2014
Organism
Arabidopsis
Samples (8)
Array (1)
Protocols (7)
Description
Arabidopsis ecotypes of Sha and Ler showed differences in tolerance to salinity stress. A previous study indicated that a premature stop codon resulting in a truncated Response to ABA and Salt 1 (RAS1) protein in Sha contributes to the increased salt tolerance relative to Ler ecotype. Sha exhibited higher germination rates and longer roots on MS plate, presumably due to the decreased ABA sensitivity in Sha. More Sha plants also survived in soil after salt treatment with relatively lower electrolyte leakage when compared to Ler. Transcriptome analysis revealed that expression levels of many genes were changed between Sha and Ler ecotypes and by salt treatments. About 500 transcripts were commonly changed by at least one salinity effect and one ecotype effect, and 171 of them were co-regulated by all four comparisons. Transcripts involved in redox, secondary metabolism, auxin metabolism, photosynthesis, cell wall, and protein synthesis were mainly down-regulated by salinity effects, while transposable element genes, microRNA and antisense sequences, histone superfamily genes, and biotic stress related genes were significantly changed by Sha ecotype effects and only slightly by salinity. Several metabolic pathways such as stress, TCA, hormone/lipid/secondary metabolism, redox, development, and GO terms involved in stress, oxidation, and defense response were enriched by both salinity and ecotype effects. Ninety-five highly inducible genes were identified as candidates of RAS1 target genes and the functions involved hormone metabolism, biotic stress, RNA, DNA synthesis, protein metabolism, cell, and microRNA metabolism. All these results indicated that the Sha ecotype was possibly preconditioned to abiotic stress relative to Ler through regulation of signaling pathways and stress responsive gene expression. These comparative transcriptomic and analytical results also confirm the complexity of ABA responses and salt stress tolerance mechanisms, and they suggest additional targets for improving tolerance. Ten days old seedlings of two Arabidopsis ecotypes, Sha and Ler, were treated with 100 mM NaCl on MS plate. Plant materials were collected for RNA extraction at 4th days after treatments.
Experiment type
transcription profiling by array 
Contacts
Zhulong Chan
MIAME
PlatformsProtocolsVariablesProcessedRaw
Files
Investigation descriptionE-GEOD-40940.idf.txt
Sample and data relationshipE-GEOD-40940.sdrf.txt
Raw data (1)E-GEOD-40940.raw.1.zip
Processed data (1)E-GEOD-40940.processed.1.zip
Array designA-GEOD-9020.adf.txt
Links