Chromothripsis in human cancer

Artists impression of chromothripsis. Image credit: Spencer Phillips

Chromothripsis in human cancer

4 Feb 2020 - 16:10


  • Scientists have discovered that the massive genomic rearrangements known as chromothripsis are far more common across cancers than previously thought
  • This research gives new insights into the relationship between chromothripsis and common hallmarks of the cancer genome
  • Research into chromothripsis across different tumour types helps us to understand the role it may play in patient survival and cancer prognosis

5 February 2020, Cambridge – Researchers at Harvard Medical School and EMBL’s European Bioinformatics Institute (EMBL-EBI) have carried out the largest analysis across cancer types of the newly discovered mutational phenomenon chromothripsis. This study is the largest of its kind to date, containing whole-genome sequencing (WGS) data from over 2600 tumours spanning 38 different types of cancer.

What is chromothripsis? 

Chromothripsis, or ‘chromosome shattering’, is a mutational process in which large stretches of a chromosome undergo massive rearrangements in a single catastrophic event. The chromosomal regions fragment into smaller pieces, rearrange, and rejoin, leading to a new genome configuration.

Fully understanding how these alterations drive cancer genome evolution, and what molecular mechanisms are involved in their generation, are important steps towards understanding cancer genome evolution.

This research was published in Nature Genetics as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project, a global effort involving the international collaboration of over 1300 scientists. In this study, the researchers showed that chromothripsis events are much more common across many types of cancer than previously thought. They could also directly link chromothripsis to common hallmarks of the cancer genome, including oncogene amplification (an increase in the number of copies of a gene that can cause cancer), and the loss of tumour suppressors (genes that regulate cell growth and division).

Chromothripsis prevalence in cancer

“We integrated WGS data from over 2600 tumours spanning more than 30 cancer types,” says Isidro Cortés-Ciriano, Group Leader at EMBL-EBI and a former postdoctoral researcher at Harvard Medical School. “From this we discovered that chromothripsis events and other types of complex genome rearrangements are pervasive across human cancers, with frequencies greater than 50% of tumours in some cancer types.”

Using WGS datasets gave the researchers an enhanced view of chromothripsis events in the cancer genome. Previous studies looking at the role of chromothripsis in cancer and congenital diseases often used low-resolution array-based technologies. Here the researchers were able to show that chromothripsis events are much more prevalent in cancer than previously estimated. They also characterised the patterns of massive genome alterations across cancer types, and studied the DNA repair mechanisms involved in their generation.

"This study is yet another demonstration of the power of large-scale whole-genome sequencing,” says Peter Park, Professor of Biomedical Informatics at Harvard Medical School and senior author of the paper. “It allowed us to probe the bewildering complexity of genome-shattering in cancer genomes and to characterise common features across hundreds of cases.”

Chromothripsis and cancer prognosis

“The discoveries made in this project allow us to better understand how cancer arises and evolves, as well as the patterns of alterations in the DNA of human tumours,” says Cortés-Ciriano. “Some of these alterations have strong clinical implications and could open new avenues for therapeutic development over the coming years.”

The researchers demonstrate that chromothripsis shapes the tumour genome, leading to the loss of tumour suppressor genes and amplification of oncogenes to drive cancer progression. Chromothripsis has been associated with poor prognosis for cancer patients, but continuing studies like this help us to understand the impact of chromothripsis and other large-scale genome alterations, and how they may be used for cancer diagnosis in the future.

Source article

CORTES-CIRIANO, I., et al. (2020). Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nature Genetics. Published online 05 02; DOI:10.1038/s41588-019-0576-7

Contact the news team

Oana Stroe
Senior Communications Officer
+44 (0)1223 494 369

Subscribe to the email newsletter

Subscribe to our publications.

Sign up Or stay updated with the RSS feed (EMBL-EBI only).