Functional analysis using EBI Metagenomics

Contents

Tutorial information .. 2
Tutorial learning objectives .. 2
An introduction to functional analysis using EMG .. 3

What are protein signatures? .. 3

Assigning functional information to metagenomic sequences .. 4

Finding functional information about samples on the EMG website 5

Exercises .. 9

Part 1 – Browsing analysed data via the EMG website ... 9
Part 2 - Analysing EMG data using STAMP .. 13
Bonus exercise – Using the EMG comparison tool .. 16

Alex Mitchell (mitchell@ebi.ac.uk) V1.5, September 2014
Tutorial information

<table>
<thead>
<tr>
<th>Course description</th>
<th>This tutorial provides an introduction to functional analysis of metagenomic data, using the EBI Metagenomics (EMG) resource. You will learn about the underlying analysis software and how it is used to infer information about the function of predicted coding sequences, and how to find and download data for use with 3rd party analysis software.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course level</td>
<td>Suitable for graduate-level scientists and above</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>Basic knowledge of biology and basic Unix skills</td>
</tr>
<tr>
<td>Subject area</td>
<td>Genes, Genomes and Metagenomes; Sequence Analysis</td>
</tr>
<tr>
<td>Target audience</td>
<td>Scientists interested in metagenome analysis</td>
</tr>
<tr>
<td>Resources required</td>
<td>Internet access (a current browser such as the latest version of Firefox, Chrome or Safari) and the STAMP analysis package.</td>
</tr>
<tr>
<td>Approximate time needed</td>
<td>60 minutes</td>
</tr>
</tbody>
</table>

Tutorial learning objectives

After completing this course, you should:

- understand how EMG provides functional analysis of metagenomic data sets
- know where to find and how to interpret analysis results for samples on the EMG website
- know how to download the raw sample data and analysis results for use with 3rd party visualisation and statistical analysis packages
An introduction to functional analysis using EMG

The EBI Metagenomics resource (EMG) provides functional analysis of predicted coding sequences (pCDS) from metagenomic data sets using the InterPro database. InterPro is a sequence analysis resource that predicts protein family membership, along with the presence of important domains and sites. It does this by combining predictive models known as protein signatures from a number of different databases into a single searchable resource. InterPro curators manually integrate the different signatures, providing names and descriptive abstracts and, whenever possible, adding Gene Ontology (GO) terms. Links are also provided to pathway databases, such as KEGG, MetaCyc and Reactome, and to structural resources, such as SCOP, CATH and PDB.

What are protein signatures?

Protein signatures are obtained by modelling the conservation of amino acids at specific positions within a group of related proteins (i.e., a protein family), or within the domains/sites shared by a group of proteins. InterPro's different member databases use different computational methods to produce protein signatures, and they each have their own particular focus of interest: structural and/or functional domains, protein families, or protein features, such as active sites or binding sites (see Figure 1).
Figure 1. InterPro member databases grouped by the methods (indicated in white coloured text) used to construct their signatures. Their focus of interest is shown in blue text.

Only a subset of the InterPro member databases are used by EMG: Gene3D, TIGRFAMs, Pfam, PRINTS and PROSITE patterns. These databases were selected since, together, they provide both high coverage and offer detailed functional analysis, and have underlying algorithms that can cope with the vast amounts of fragmentary sequence data found in metagenomic datasets.

Assigning functional information to metagenomic sequences

Whilst InterPro matches to metagenomic sequence sets are informative in their own right, EMG offers an additional type of analysis in the form of Gene Ontology (GO) terms.

The Gene Ontology is made up of 3 structured controlled vocabularies that describe gene products in terms of their associated biological processes, cellular components and molecular functions in a species-independent manner. By using GO terms, scientists working on different species or using different databases can compare datasets, since they have a precisely defined name and meaning

Functional analysis using EMG
for a particular concept. Terms in the Gene Ontology are ordered into hierarchies, with less specific terms towards the top and more specific terms towards the bottom (see Figure 2).

Figure 2. An example of GO terms organised into a hierarchy, with terms becoming less specific as the hierarchy is ascended (e.g., alpha-tubulin binding is a type of cytoskeletal binding, which is a type of protein binding). Note that a GO term can have more than one parent term. The Gene Ontology also allows for different types of relationships between terms (such as ‘has part of’ or ‘regulates’). The EMG analysis pipeline only uses the straightforward ‘is a’ relationships. More information about the GO project can be found at http://www.geneontology.org/GO.doc.shtml

As part of the EMG analysis pipeline, GO terms for molecular function, biological process and cellular component are associated to pCDS in a sample by via the InterPro2GO mapping service. This works as follows: InterPro entries are given GO terms by curators if the terms can be accurately applied to all of the proteins matching that entry. Sequences searched against InterPro are then associated with GO terms by virtue of the entries they match - a protein that matches one InterPro entry with the GO term ‘kinase activity’ and another InterPro entry with the GO term ‘zinc ion binding’ will be annotated with both GO terms.

Finding functional information about samples on the EMG website

Functional analysis of samples within projects on the EMG website (www.ebi.ac.uk/metagenomics/) can be accessed by clicking on the **Functional Analysis** tab found toward the top of any sample page (see Figure 3 below).
Figure 3. A **Functional analysis** tab can be found towards the top of each sample page.

Clicking on this tab brings up a page displaying sequence features (the number of reads with pCDS, the number of pCDS with InterPro matches, etc), InterPro match information and GO term annotation for the sample, as shown in Figure 4 below.
Figure 4. Functional analysis of metagenomics data, as shown on the EMG website. A) InterPro match information for the predicted coding sequences in the sample is shown. The number of InterPro matches are displayed graphically, and as a table that has a text search facility. B) The GO terms predicted for the sample are displayed. Different graphical representations are available, and can be selected by clicking on the ‘Switch view’ icons.

The Gene Ontology terms displayed graphically on the web site have been ‘slimmed’ with a special GO slim developed for metagenomic data sets. GO slims are cut-down versions of the Gene Ontology, containing a subset of the terms in the whole GO. They give a broad overview of the ontology content without the detail of the specific fine-grained terms.

The full data sets used to generate both the InterPro and GO overview charts, along with a host of additional data (processed reads, pCDS, reads encoding 16S rRNAs, taxonomic analyses, etc) can be downloaded for further analysis by clicking the Download tab, found towards the top of the page (see Figure 5).
Figure 5. Each sample has a download tab, where the full set of sequences, analyses, summaries and raw data can be downloaded.
Exercises

Part 1 – Browsing analysed data via the EMG website

Open the Metagenomics Portal homepage in a web browser (https://www.ebi.ac.uk/metagenomics/).

From the Projects list (click the ‘Projects’ tab, or ‘View all projects’, find and click on HOT station, Central North Pacific Gyre, ALOH.

You should now have a Project overview page describing the project, related publications, and links to the samples that the project contains.

Question 1: What publications are associated with this study?

Scroll down to Associated Samples and open the HOT Station ALOHA, 25 m sample.

You should now have a Sample Overview page, describing various meta-data associated with the sample, such as the geographic location from which it was isolated, its collection date, and so on.

Question 2: What is the latitude, longitude and depth at which the sample was collected?

Question 3: What geographic location does this correspond to?

Question 4: What environmental ontology (ENVO) identifier and name has the sample material been annotated with?

The page has a number of tabs towards the top (Overview, Quality control, Taxonomy analysis, Functional analysis).

Click on the ‘Download’ tab. Click the file labelled ‘Predicted CDS (FASTA)’ link to save this file to your computer. Find the file (it should be in your Downloads folder) and copy it to your Desktop. Either double click on it to open it, or examine it using ‘less’ by typing the following commands in a terminal window:

Functional analysis using EMG
cd ~/Desktop

less HOT_Station_ALOHA, 25m_depth_pCDS.faa

Have a look at one or two of the many sequences it contains.

We will look at the analysis results for this entire batch of sequences, displayed on the EMG website, in a moment. First, we will attempt analyse just one of the predicted coding sequences using InterPro (the analysis results on the EMG website summarise these kind of results for tens or hundreds of thousands of sequences).

In a new tab or window, open your web browser and navigate to http://www.ebi.ac.uk/interpro/ Copy and paste the following sequence into the text box on the InterPro home page where it says ‘Analyse your sequence’:

> SRR010898.122503_1_115_+
ENNQEIKIIRNYINEFNLTGFIVGIPLDEKGQMTNQAI

Press Search and wait for your results. Your sequence will be run through the InterProScan analysis software, which attempts to match it against all of the different signatures in the InterProScan database.

Question 5: What feature does InterProScan predict your sequence to contain?

Question 6: What GO terms is the feature associated with?

Return to the sample page for HOT station, Central North Pacific Gyre, ALOH 25 m.

Now we are going to look at the functional analysis results for all of the pCDS in the sample. First, we will find the number of sequences that made it through to the functional analysis section of the pipeline.
Click on the **Quality control** tab. This page displays a series of charts, showing how many sequences passed each quality control step, how many reads were left after clustering, and so on.

Question 7: After all of the quality filtering steps are complete, how many reads were submitted for analysis by the pipeline?

Next, we will look at the results of the functional predictions for the pCDS. These can be found under the **Functional analysis** tab.

Click on the **Functional analysis** tab and examine the InterPro match section. The top part of this page shows a sequence feature summary, showing the number of reads with predicted coding sequences (pCDS), the number of pCDS with InterPro matches, etc.

Question 8: How many of the reads that passed the quality control stage had predicted coding sequences (pCDS)?

Question 9: How many pCDS have InterProScan hits?

Scroll down the page to the InterPro match summary section.

Question 10: How many different InterPro entries were matched by the pCDS?

Question 11: Why is this figure different to the number of pCDS that have InterProScan hits?

Next we will examine the GO terms predicted by InterPro for the pCDS in the sample.

Scroll down to the GO term annotation section of the page and examine the 3 bar charts, which correspond to the 3 different components of the Gene Ontology.

Question 12: What are the top 3 biological process terms predicted for the pCDS from the sample?
Selecting the pie chart representation of GO terms makes it easier to visualise the data to find the answer.

Now we will look at the taxonomic analysis for this sample.

Click on the Taxonomy Analysis tab and examine the phylum composition graph and table.

Question 13: How many different OTUs were found in this sample?

Question 14: What are the top 3 phyla in the sample?

Select the Krona chart view of the data using the icon. This brings up an interactive chart that can be used to analyse data at different taxonomic ranks.

Question 15: What proportion of cyanobacteria in this sample are made up of *Synechococcales*?

Now we will compare these analyses with those for a sample taken at 500 m from the same geographical location.

In a new tab or window, find and open the HOT station, Central North Pacific Gyre, ALOH project page again. Select the sample HOT Station ALOHA, 500m and examine the information under the Functional analysis tabs.

Question 16: How many pCDS were in this sample?

Question 17: How many of the pCDSs have an InterPro match?

Question 18: How many different InterPro entries are matched by this sample?

Question 19: Are these figures broadly comparable to the ones for the 25 m sample?
Scroll to the bottom of the page and examine the GO term annotation for the day 500 m sample.

Question 20: Are there visible differences between the GO terms for this sample and the 25 m sample? Could there be any biological explanation for this?

Selecting the bar chart representation of GO terms makes it easier to compare different data sets.

Return to the HOT station project page and open the taxonomy analysis results for all 4 of the samples, each in a new window.

Question 21: How does the taxonomic composition change at different ocean sampling depths? Are any trends in the data consistent with your answer to question 18?

Part 2 - Analysing EMG data using STAMP

Whilst EMG does not currently support direct comparison of multiple samples, it is possible to download the underlying data for use with other visualisation and/or statistical analysis tools, such as STAMP (Statistical Analysis of Metagenomic Profiles: http://kiwi.cs.dal.ca/Software/STAMP). The Downloads tab for a given sample lists the files with the necessary data, although a slight amount of data wrangling is usually required to reformat files, etc.

We are going perform a detailed comparison of the GO slimmed biological process results for the samples at 25 m and 500 m using STAMP. To do this, open the HOT station, Central North Pacific Gyre, ALOH project page again. Select the sample HOT Station ALOHA, 25 m study and download the GO slim annotation (CSV) file from the download tab. Repeat this for the HOT Station ALOHA, 500 m study.

You should now have the following 2 files in your downloads folder:

HOT_Station_ALOHA,_25m_depth_GO.slim.csv

HOT_Station_ALOHA,_500m_depth_MG_GO.slim.csv

(don’t worry about the file name inconsistency – that is something we need to fix in the database!)
Drag or copy these files to your desktop, and then launch a terminal window, so that you can manipulate the files on the command line.

Navigate to the Desktop directory by typing ‘cd ~/Desktop/’. Next, type ‘ls’ to make sure you can see the files, and take a look at their contents using the ‘less’ command.

First we are going to wrangle data from the 25 m sample, using a mixture of ‘grep’ to pull out the lines containing the phrase ‘biological_process’ and ‘awk’ to split up and reorder the fields.

i awk is a text-processing language that is useful for extracting or transforming documents and reformatting text. You can find out more about it here: http://www.gnu.org/software/gawk/manual/gawk.html

Enter the following command (all on one line):

```
grep 'biological_process'
HOT_Station_ALOHA,_25m_depth_GO_slim.csv | awk -F"" '{print $6 " \t" $4 " \t" $8 }' > biological_process_25m.txt
```

This should produce a new file called ‘biological_process_25m.txt’. Use ‘less’ to examine this file.

Question 22: What are the differences between this file and the HOT_Station_ALOHA,_25m_depth_GO_slim.csv file?

Next, we are going to add the biological process data from the 500 m sample to this file. Once again, will use ‘grep’ to pull out the relevant lines in the source file, ‘awk’ to process the lines and output the correct fields, and ‘paste’ to merge the data with the contents of the file we produced above.

Enter the following command (all on one line):

```
grep 'biological_process'
HOT_Station_ALOHA,_500m_depth,_MG_GO_slim.csv | awk -F"" '{print $8 }' | paste biological_process_25m.txt -
>
biological_process_25mvs500m.txt
```

This should create another new file, this time called ‘biological_process_25mvs500m.txt’. Use ‘less’ to examine this file.
Question 23: What is the difference between this file and the biological_process_25m.txt file?

Finally, we need to add a simple header to the file, so that STAMP can process it properly. To do this, we could open the file and add the header manually, but here we will do it on the command line using the `printf` command to write the header, `cat` to print the contents of the file, and directing the output to a new file with the `>` operator.

Enter the following command (all on one line):

```
printf 'Classification\tSubclassifcation\t25\t500m\n' | cat - biological_process_25mvs500m.txt > biological_process_25mvs500m.spf
```

This command should have produced a third file called `biological_process_25mvs500m.spf` that STAMP can read.

Launch STAMP by clicking on its icon in the application menu (it can be found under Applications > Other). Load the biological_process_25mvs500m.spf file into STAMP (you will need to set ‘Profile level’ to ‘Subclassification’ and select ‘Two samples’ from the tabs on the left hand side of the page to view the file once it is loaded). Try experimenting with different plot types and statistical tests.

Question 24: Looking at the ‘Profile bar plot’, are there any observable differences in biological process GO terms between the 2 samples?

For your convenience, three files containing the HOT Station GO term results for all 3 branches of the Gene Ontology (molecular function, biological process and cellular component) at each sample depth have been pre-generated and formatted for use with STAMP. These are located in the AlexTutorial folder on the desktop (filenames: HOT_Station_ALOHA_bp.spf, HOT_Station_ALOHA_mf.spf and HOT_Station_ALOHA_cc.spf).

Try loading these files into STAMP, as you did with the previous file, and exploring the results. You can select different samples to compare (25, 75, 125 and 500 m) using the **sample 1** and **sample 2** drop down menus.
Question 25: What trends can you identify in the molecular function, biological process and cellular component GO terms across the different sampling depths?

Bonus exercise – Using the EMG comparison tool

We are in the process of developing a comparison tool for EMG, which will allow the direct comparison of samples within a project. The tool is currently in beta testing mode, and can be accessed by clicking on the 'Comparison Tool' tab, as illustrated in Figure 6 below. At present, the tool only compares slimmed GO terms, but will be expanded to cover full GO terms, InterPro annotations, and OTUs as development of the site continues.

Figure 6. Clicking the appropriate tab takes you to the comparison tool page.

Click on the Comparison tool tab and choose the HOT station ALOHA project from the sample list and select all the samples.

Question 26: Using the barchart comparison view, are you able to replicate the results you got with STAMP in the exercise above?

Feel free to explore the tool using other data-sets. We would be very interested to hear any feedback that you have, either directly or via the contact form on the EMG web page.