PDBsum entry 1qu7

Go to PDB code: 
protein Protein-protein interface(s) links
Signaling protein PDB id
Protein chains
227 a.a. *
Waters ×187
* Residue conservation analysis
PDB id:
Name: Signaling protein
Title: Four helical-bundle structure of the cytoplasmic domain of a chemotaxis receptor
Structure: Methyl-accepting chemotaxis protein i. Chain: a, b. Fragment: cytoplasmic domain (residue 286-526). Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
2.60Å     R-factor:   0.243     R-free:   0.276
Authors: K.K.Kim,H.Yokota,S.-H.Kim
Key ref:
K.K.Kim et al. (1999). Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature, 400, 787-792. PubMed id: 10466731 DOI: 10.1038/23512
07-Jul-99     Release date:   12-Jul-00    
Go to PROCHECK summary

Protein chains
Pfam   ArchSchema ?
P02942  (MCP1_ECOLI) -  Methyl-accepting chemotaxis protein I
551 a.a.
227 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     membrane   1 term 
  Biological process     signal transduction   2 terms 
  Biochemical function     signal transducer activity     1 term  


DOI no: 10.1038/23512 Nature 400:787-792 (1999)
PubMed id: 10466731  
Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor.
K.K.Kim, H.Yokota, S.H.Kim.
The bacterial chemotaxis receptors are transmembrane receptors with a simple signalling pathway which has elements relevant to the general understanding of signal recognition and transduction across membranes, how signals are relayed between molecules in a pathway, and how adaptation to a persistent signal is achieved. In contrast to many mammalian receptors which signal by oligomerizing upon ligand binding, the chemotaxis receptors are dimeric even in the absence of their ligands, and their signalling does not depend on a monomer-dimer equilibrium. Bacterial chemotaxis receptors are composed of a ligand-binding domain, a transmembrane domain consisting of two helices TM1 and TM2, and a cytoplasmic domain. All known bacterial chemotaxis receptors have a highly conserved cytoplasmic domain, which unites signals from different ligand domains into a single signalling pathway to flagella motors. Here we report the crystal structure of the cytoplasmic domain of a serine chemotaxis receptor of Escherichia coli, which reveals a 200 A-long coiled-coil of two antiparallel helices connected by a 'U-turn'. Two of these domains form a long, supercoiled, four-helical bundle in the cytoplasmic portion of the receptor.
  Selected figure(s)  
Figure 2.
Figure 2: Two views of the cTsrQ dimer structure related by a 90-degree rotation around the non-crystallographic two-fold axis along the length of the molecules. The methylation sites are shown as yellow balls in one monomer and orange balls in the other. Right: one monomer of cTsrQ is shown in purple and the other is light blue; left: residues with high temperature factors are shown in red and those with low temperature factors in blue. The average B factor in the well-defined region (residues 361–420) is 36.3 å^2 and in the other part is 79.7 å^2. The figures were generated by the program MOLSCRIPT^30.
Figure 5.
Figure 5: Model of an intact Ecoli Tsr receptor dimer. Right: diagram of an intact Tsr receptor dimer model, with one monomer in blue and the other in pink. The presumed membrane bilayer is represented by a grey band. Landmark residues are labelled in the smaller font, and the numbers of residues in helical sections are shown in a larger font. The length of each domain is indicated. Left: ribbon diagram of the intact Tsr dimer model viewed perpendicularly to the non-crystallographic two-fold symmetry axis. The dimensions are scaled to match those of the figure at right. One monomer is in purple, and the other in cyan. Methylation sites are marked by yellow balls in one monomer and orange balls in the other, and the ligand serine is drawn as a red ball partially hidden at upper left corner. Computer-modelled portions without crystallographic models are less reliable. They include residue 1 to the end of TM1, TM2 and up to residue 293, and residues 521 to 551, especially the CheR-binding region at the C-terminal end.
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (1999, 400, 787-792) copyright 1999.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20864474 G.D.Glekas, J.R.Cates, T.M.Cohen, C.V.Rao, and G.W.Ordal (2011).
Site-specific methylation in Bacillus subtilis chemotaxis: effect of covalent modifications to the chemotaxis receptor McpB.
  Microbiology, 157, 56-65.  
21407212 G.Lan, S.Schulmeister, V.Sourjik, and Y.Tu (2011).
Adapt locally and act globally: strategy to maintain high chemoreceptor sensitivity in complex environments.
  Mol Syst Biol, 7, 475.  
21255111 M.Li, C.M.Khursigara, S.Subramaniam, and G.L.Hazelbauer (2011).
Chemotaxis kinase CheA is activated by three neighbouring chemoreceptor dimers as effectively as by receptor clusters.
  Mol Microbiol, 79, 677-685.  
  21306449 Q.Zhou, P.Ames, and J.S.Parkinson (2011).
Biphasic control logic of HAMP domain signalling in the Escherichia coli serine chemoreceptor.
  Mol Microbiol, 80, 596-611.  
20088541 D.J.Fowler, R.M.Weis, and L.K.Thompson (2010).
Kinase-active signaling complexes of bacterial chemoreceptors do not contain proposed receptor-receptor contacts observed in crystal structures.
  Biochemistry, 49, 1425-1434.  
20061469 D.N.Amin, and G.L.Hazelbauer (2010).
The chemoreceptor dimer is the unit of conformational coupling and transmembrane signaling.
  J Bacteriol, 192, 1193-1200.  
21091513 D.N.Amin, and G.L.Hazelbauer (2010).
Chemoreceptors in signalling complexes: shifted conformation and asymmetric coupling.
  Mol Microbiol, 78, 1313-1323.  
  20516135 E.I.Tocheva, Z.Li, and G.J.Jensen (2010).
Electron cryotomography.
  Cold Spring Harb Perspect Biol, 2, a003442.  
19864420 G.D.Glekas, R.M.Foster, J.R.Cates, J.A.Estrella, M.J.Wawrzyniak, C.V.Rao, and G.W.Ordal (2010).
A PAS domain binds asparagine in the chemotaxis receptor McpB in Bacillus subtilis.
  J Biol Chem, 285, 1870-1878.  
20122866 G.L.Hazelbauer, and W.C.Lai (2010).
Bacterial chemoreceptors: providing enhanced features to two-component signaling.
  Curr Opin Microbiol, 13, 124-132.  
20355710 J.Bhatnagar, P.P.Borbat, A.M.Pollard, A.M.Bilwes, J.H.Freed, and B.R.Crane (2010).
Structure of the ternary complex formed by a chemotaxis receptor signaling domain, the CheA histidine kinase, and the coupling protein CheW as determined by pulsed dipolar ESR spectroscopy.
  Biochemistry, 49, 3824-3841.  
20738376 J.Lacal, C.García-Fontana, F.Muñoz-Martínez, J.L.Ramos, and T.Krell (2010).
Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions.
  Environ Microbiol, 12, 2873-2884.  
20485527 J.Miller, M.Parker, R.B.Bourret, and M.C.Giddings (2010).
An agent-based model of signal transduction in bacterial chemotaxis.
  PLoS One, 5, e9454.  
19923210 K.Kanchan, J.Linder, K.Winkler, K.Hantke, A.Schultz, and J.E.Schultz (2010).
Transmembrane signaling in chimeras of the Escherichia coli aspartate and serine chemotaxis receptors and bacterial class III adenylyl cyclases.
  J Biol Chem, 285, 2090-2099.  
20025667 L.E.Hartley-Tassell, L.K.Shewell, C.J.Day, J.C.Wilson, R.Sandhu, J.M.Ketley, and V.Korolik (2010).
Identification and characterization of the aspartate chemosensory receptor of Campylobacter jejuni.
  Mol Microbiol, 75, 710-730.  
20159151 M.Kumar, M.S.Mommer, and V.Sourjik (2010).
Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli.
  Biophys J, 98, 552-559.  
20204450 S.J.Facey, and A.Kuhn (2010).
Biogenesis of bacterial inner-membrane proteins.
  Cell Mol Life Sci, 67, 2343-2362.  
20717142 V.Sourjik, and J.P.Armitage (2010).
Spatial organization in bacterial chemotaxis.
  EMBO J, 29, 2724-2733.  
19805102 A.Briegel, D.R.Ortega, E.I.Tocheva, K.Wuichet, Z.Li, S.Chen, A.Müller, C.V.Iancu, G.E.Murphy, M.J.Dobro, I.B.Zhulin, and G.J.Jensen (2009).
Universal architecture of bacterial chemoreceptor arrays.
  Proc Natl Acad Sci U S A, 106, 17181-17186.  
19149470 A.M.Pollard, A.M.Bilwes, and B.R.Crane (2009).
The structure of a soluble chemoreceptor suggests a mechanism for propagating conformational signals.
  Biochemistry, 48, 1936-1944.
PDB codes: 3g67 3g6b
19547746 D.Greenfield, A.L.McEvoy, H.Shroff, G.E.Crooks, N.S.Wingreen, E.Betzig, and J.Liphardt (2009).
Self-organization of the escherichia coli chemotaxis network imaged with super-resolution light microscopy.
  PLoS Biol, 7, e1000137.  
19156130 D.Kentner, and V.Sourjik (2009).
Dynamic map of protein interactions in the Escherichia coli chemotaxis pathway.
  Mol Syst Biol, 5, 238.  
19705835 K.E.Swain, M.A.Gonzalez, and J.J.Falke (2009).
Engineered socket study of signaling through a four-helix bundle: evidence for a yin-yang mechanism in the kinase control module of the aspartate receptor.
  Biochemistry, 48, 9266-9277.  
19965466 L.Shapiro, H.H.McAdams, and R.Losick (2009).
Why and how bacteria localize proteins.
  Science, 326, 1225-1228.  
19678895 M.D.Manson (2009).
A mutational wrench in the HAMP gearbox.
  Mol Microbiol, 73, 742-746.  
19656294 Q.Zhou, P.Ames, and J.S.Parkinson (2009).
Mutational analyses of HAMP helices suggest a dynamic bundle model of input-output signalling in chemoreceptors.
  Mol Microbiol, 73, 801-814.  
19167296 R.G.Endres (2009).
Polar chemoreceptor clustering by coupled trimers of dimers.
  Biophys J, 96, 453-463.  
19606502 U.K.Muppirala, S.Desensi, T.P.Lybrand, G.L.Hazelbauer, and Z.Li (2009).
Molecular modeling of flexible arm-mediated interactions between bacterial chemoreceptors and their modification enzyme.
  Protein Sci, 18, 1702-1714.  
  20514232 Z.Gao, and G.E.Schaller (2009).
The role of receptor interactions in regulating ethylene signal transduction.
  Plant Signal Behav, 4, 1152-1153.  
19747079 Z.Li, and J.B.Stock (2009).
Protein carboxyl methylation and the biochemistry of memory.
  Biol Chem, 390, 1087-1096.  
18363791 A.Briegel, H.J.Ding, Z.Li, J.Werner, Z.Gitai, D.P.Dias, R.B.Jensen, and G.J.Jensen (2008).
Location and architecture of the Caulobacter crescentus chemoreceptor array.
  Mol Microbiol, 69, 30-41.  
18657546 A.Vaknin, and H.C.Berg (2008).
Direct evidence for coupling between bacterial chemoreceptors.
  J Mol Biol, 382, 573-577.  
18179279 C.H.Hansen, R.G.Endres, and N.S.Wingreen (2008).
Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation.
  PLoS Comput Biol, 4, e1.  
18940922 C.M.Khursigara, X.Wu, P.Zhang, J.Lefman, and S.Subramaniam (2008).
Role of HAMP domains in chemotaxis signaling by bacterial chemoreceptors.
  Proc Natl Acad Sci U S A, 105, 16555-16560.  
18165013 G.L.Hazelbauer, J.J.Falke, and J.S.Parkinson (2008).
Bacterial chemoreceptors: high-performance signaling in networked arrays.
  Trends Biochem Sci, 33, 9.  
18844997 H.T.Tran, J.Krushkal, F.M.Antommattei, D.R.Lovley, and R.M.Weis (2008).
Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function.
  BMC Genomics, 9, 471.  
  20107574 I.L.Budyak, O.S.Mironova, N.Yanamala, V.Manoharan, G.Büldt, R.Schlesinger, and J.Klein-Seetharaman (2008).
Flexibility of the cytoplasmic domain of the phototaxis transducer II from Natronomonas pharaonis.
  J Biophys, 2008, 267912.  
18083806 J.Guhaniyogi, T.Wu, S.S.Patel, and A.M.Stock (2008).
Interaction of CheY with the C-terminal peptide of CheZ.
  J Bacteriol, 190, 1419-1428.
PDB codes: 2pl9 2pmc
18203838 K.J.Watts, M.S.Johnson, and B.L.Taylor (2008).
Structure-function relationships in the HAMP and proximal signaling domains of the aerotaxis receptor Aer.
  J Bacteriol, 190, 2118-2127.  
18647166 L.Ping, B.Weiner, and N.Kleckner (2008).
Tsr-GFP accumulates linearly with time at cell poles, and can be used to differentiate 'old' versus 'new' poles, in Escherichia coli.
  Mol Microbiol, 69, 1427-1438.  
18692469 L.R.Swem, D.L.Swem, N.S.Wingreen, and B.L.Bassler (2008).
Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi.
  Cell, 134, 461-473.  
18931127 P.Mowery, J.B.Ostler, and J.S.Parkinson (2008).
Different signaling roles of two conserved residues in the cytoplasmic hairpin tip of Tsr, the Escherichia coli serine chemoreceptor.
  J Bacteriol, 190, 8065-8074.  
18682701 R.G.Endres, O.Oleksiuk, C.H.Hansen, Y.Meir, V.Sourjik, and N.S.Wingreen (2008).
Variable sizes of Escherichia coli chemoreceptor signaling teams.
  Mol Syst Biol, 4, 211.  
18667570 S.H.Dzinic, M.Shukla, I.Mandija, T.S.Ram, and J.L.Ram (2008).
Variable length tandem repeat polyglutamine sequences in the flexible tether region of the Tsr chemotaxis receptor of Escherichia coli.
  Microbiology, 154, 2380-2386.  
18476921 S.Thiem, and V.Sourjik (2008).
Stochastic assembly of chemoreceptor clusters in Escherichia coli.
  Mol Microbiol, 68, 1228-1236.  
18484950 T.S.Shimizu, and N.Le Novère (2008).
Looking inside the box: bacterial transistor arrays.
  Mol Microbiol, 69, 5-9.  
18711126 T.Y.Besschetnova, D.J.Montefusco, A.E.Asinas, A.L.Shrout, F.M.Antommattei, and R.M.Weis (2008).
Receptor density balances signal stimulation and attenuation in membrane-assembled complexes of bacterial chemotaxis signaling proteins.
  Proc Natl Acad Sci U S A, 105, 12289-12294.  
  18978960 A.R.Crofts (2007).
Life, Information, Entropy, and Time: Vehicles for Semantic Inheritance.
  Complexity, 13, 14-50.  
17217957 A.Vaknin, and H.C.Berg (2007).
Physical responses of bacterial chemoreceptors.
  J Mol Biol, 366, 1416-1423.  
17824925 B.L.Taylor (2007).
Aer on the inside looking out: paradigm for a PAS-HAMP role in sensing oxygen, redox and energy.
  Mol Microbiol, 65, 1415-1424.  
17668294 E.N.Baker (2007).
Structural genomics as an approach towards understanding the biology of tuberculosis.
  J Struct Funct Genomics, 8, 57-65.  
17163981 E.Perez, and A.M.Stock (2007).
Characterization of the Thermotoga maritima chemotaxis methylation system that lacks pentapeptide-dependent methyltransferase CheR:MCP tethering.
  Mol Microbiol, 63, 363-378.  
17301220 J.S.Parkinson (2007).
Ancient chemoreceptors retain their flexibility.
  Proc Natl Acad Sci U S A, 104, 2559-2560.  
17994770 K.E.Swain, and J.J.Falke (2007).
Structure of the conserved HAMP domain in an intact, membrane-bound chemoreceptor: a disulfide mapping study.
  Biochemistry, 46, 13684-13695.  
17360518 L.Guo, A.Han, D.L.Bates, J.Cao, and L.Chen (2007).
Crystal structure of a conserved N-terminal domain of histone deacetylase 4 reveals functional insights into glutamine-rich domains.
  Proc Natl Acad Sci U S A, 104, 4297-4302.
PDB codes: 2h8n 2o94
17708429 M.J.Park, F.W.Dahlquist, and F.J.Doyle (2007).
Simultaneous high gain and wide dynamic range in a model of bacterial chemotaxis.
  IET Syst Biol, 1, 222-229.  
17519437 M.Sebaihia, M.W.Peck, N.P.Minton, N.R.Thomson, M.T.Holden, W.J.Mitchell, A.T.Carter, S.D.Bentley, D.R.Mason, L.Crossman, C.J.Paul, A.Ivens, M.H.Wells-Bennik, I.J.Davis, A.M.Cerdeño-Tárraga, C.Churcher, M.A.Quail, T.Chillingworth, T.Feltwell, A.Fraser, I.Goodhead, Z.Hance, K.Jagels, N.Larke, M.Maddison, S.Moule, K.Mungall, H.Norbertczak, E.Rabbinowitsch, M.Sanders, M.Simmonds, B.White, S.Whithead, and J.Parkhill (2007).
Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes.
  Genome Res, 17, 1082-1092.  
17360429 P.Zhang, C.M.Khursigara, L.M.Hartnell, and S.Subramaniam (2007).
Direct visualization of Escherichia coli chemotaxis receptor arrays using cryo-electron microscopy.
  Proc Natl Acad Sci U S A, 104, 3777-3781.  
17609126 R.B.Bass, S.L.Butler, S.A.Chervitz, S.L.Gloor, and J.J.Falke (2007).
Use of site-directed cysteine and disulfide chemistry to probe protein structure and dynamics: applications to soluble and transmembrane receptors of bacterial chemotaxis.
  Methods Enzymol, 423, 25-51.  
17676982 R.G.Endres, J.J.Falke, and N.S.Wingreen (2007).
Chemotaxis receptor complexes: from signaling to assembly.
  PLoS Comput Biol, 3, e150.  
17299051 R.P.Alexander, and I.B.Zhulin (2007).
Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors.
  Proc Natl Acad Sci U S A, 104, 2885-2890.  
17332753 S.Thiem, D.Kentner, and V.Sourjik (2007).
Positioning of chemosensory clusters in E. coli and its relation to cell division.
  EMBO J, 26, 1615-1623.  
17443712 T.C.Pham, R.W.Kriwacki, and A.L.Parrill (2007).
Peptide design and structural characterization of a GPCR loop mimetic.
  Biopolymers, 86, 298-310.
PDB code: 2dco
16920717 A.E.Asinas, and R.M.Weis (2006).
Competitive and cooperative interactions in receptor signaling complexes.
  J Biol Chem, 281, 30512-30523.  
16846213 A.S.Miller, S.C.Kohout, K.A.Gilman, and J.J.Falke (2006).
CheA Kinase of bacterial chemotaxis: chemical mapping of four essential docking sites.
  Biochemistry, 45, 8699-8711.  
16407109 A.Vaknin, and H.C.Berg (2006).
Osmotic stress mechanically perturbs chemoreceptors in Escherichia coli.
  Proc Natl Acad Sci U S A, 103, 592-596.  
16829557 B.Windisch, D.Bray, and T.Duke (2006).
Balls and chains--a mesoscopic approach to tethered protein domains.
  Biophys J, 91, 2383-2392.  
16856941 D.Kentner, S.Thiem, M.Hildenbeutel, and V.Sourjik (2006).
Determinants of chemoreceptor cluster formation in Escherichia coli.
  Mol Microbiol, 61, 407-417.  
17064953 D.Kentner, and V.Sourjik (2006).
Spatial organization of the bacterial chemotaxis system.
  Curr Opin Microbiol, 9, 619-624.  
16707700 E.Perez, H.Zheng, and A.M.Stock (2006).
Identification of methylation sites in Thermotoga maritima chemotaxis receptors.
  J Bacteriol, 188, 4093-4100.  
16679313 H.Irieda, M.Homma, M.Homma, and I.Kawagishi (2006).
Control of chemotactic signal gain via modulation of a pre-formed receptor array.
  J Biol Chem, 281, 23880-23886.  
17032755 I.L.Budyak, V.Pipich, O.S.Mironova, R.Schlesinger, G.Zaccai, and J.Klein-Seetharaman (2006).
Shape and oligomerization state of the cytoplasmic domain of the phototaxis transducer II from Natronobacterium pharaonis.
  Proc Natl Acad Sci U S A, 103, 15428-15433.  
16446460 J.E.Keymer, R.G.Endres, M.Skoge, Y.Meir, and N.S.Wingreen (2006).
Chemosensing in Escherichia coli: two regimes of two-state receptors.
  Proc Natl Acad Sci U S A, 103, 1786-1791.  
16513745 K.J.Watts, K.Sommer, S.L.Fry, M.S.Johnson, and B.L.Taylor (2006).
Function of the N-terminal cap of the PAS domain in signaling by the aerotaxis receptor Aer.
  J Bacteriol, 188, 2154-2162.  
16430703 K.J.Watts, M.S.Johnson, and B.L.Taylor (2006).
Minimal requirements for oxygen sensing by the aerotaxis receptor Aer.
  Mol Microbiol, 59, 1317-1326.  
16672602 K.K.Gosink, M.C.Burón-Barral, and J.S.Parkinson (2006).
Signaling interactions between the aerotaxis transducer Aer and heterologous chemoreceptors in Escherichia coli.
  J Bacteriol, 188, 3487-3493.  
16557636 L.L.Kiessling, J.E.Gestwicki, and L.E.Strong (2006).
Synthetic multivalent ligands as probes of signal transduction.
  Angew Chem Int Ed Engl, 45, 2348-2368.  
16369945 M.D.Baker, P.M.Wolanin, and J.B.Stock (2006).
Signal transduction in bacterial chemotaxis.
  Bioessays, 28, 9.  
16529985 M.D.Baker, P.M.Wolanin, and J.B.Stock (2006).
Systems biology of bacterial chemotaxis.
  Curr Opin Microbiol, 9, 187-192.  
16959572 M.Hulko, F.Berndt, M.Gruber, J.U.Linder, V.Truffault, A.Schultz, J.Martin, J.E.Schultz, A.N.Lupas, and M.Coles (2006).
The HAMP domain structure implies helix rotation in transmembrane signaling.
  Cell, 126, 929-940.  
16565056 M.L.Skoge, R.G.Endres, and N.S.Wingreen (2006).
Receptor-receptor coupling in bacterial chemotaxis: evidence for strongly coupled clusters.
  Biophys J, 90, 4317-4326.  
16573695 M.Li, and G.L.Hazelbauer (2006).
The carboxyl-terminal linker is important for chemoreceptor function.
  Mol Microbiol, 60, 469-479.  
16690741 M.Strong, M.R.Sawaya, S.Wang, M.Phillips, D.Cascio, and D.Eisenberg (2006).
Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis.
  Proc Natl Acad Sci U S A, 103, 8060-8065.
PDB code: 2g38
16751275 P.Ames, and J.S.Parkinson (2006).
Conformational suppression of inter-receptor signaling defects.
  Proc Natl Acad Sci U S A, 103, 9292-9297.  
16973743 P.M.Wolanin, M.D.Baker, N.R.Francis, D.R.Thomas, D.J.DeRosier, and J.B.Stock (2006).
Self-assembly of receptor/signaling complexes in bacterial chemotaxis.
  Proc Natl Acad Sci U S A, 103, 14313-14318.  
16924119 R.G.Endres, and N.S.Wingreen (2006).
Precise adaptation in bacterial chemotaxis through "assistance neighborhoods".
  Proc Natl Acad Sci U S A, 103, 13040-13044.  
16738603 R.M.Weis (2006).
Inch by inch, row by row.
  Nat Struct Mol Biol, 13, 382-384.  
16707686 S.M.Ward, A.F.Bormans, and M.D.Manson (2006).
Mutationally altered signal output in the Nart (NarX-Tar) hybrid chemoreceptor.
  J Bacteriol, 188, 3944-3951.  
16622408 S.Y.Park, P.P.Borbat, G.Gonzalez-Bonet, J.Bhatnagar, A.M.Pollard, J.H.Freed, A.M.Bilwes, and B.R.Crane (2006).
Reconstruction of the chemotaxis receptor-kinase assembly.
  Nat Struct Mol Biol, 13, 400-407.
PDB codes: 2ch4 2ch7
16864771 T.Boldog, S.Grimme, M.Li, S.G.Sligar, and G.L.Hazelbauer (2006).
Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties.
  Proc Natl Acad Sci U S A, 103, 11509-11514.  
16953892 V.Anantharaman, S.Balaji, and L.Aravind (2006).
The signaling helix: a common functional theme in diverse signaling proteins.
  Biol Direct, 1, 25.  
16879656 W.C.Lai, B.D.Beel, and G.L.Hazelbauer (2006).
Adaptational modification and ligand occupancy have opposite effects on positioning of the transmembrane signalling helix of a chemoreceptor.
  Mol Microbiol, 61, 1081-1090.  
16322572 W.C.Lai, M.L.Peach, T.P.Lybrand, and G.L.Hazelbauer (2006).
Diagnostic cross-linking of paired cysteine pairs demonstrates homologous structures for two chemoreceptor domains with low sequence identity.
  Protein Sci, 15, 94.  
16045621 A.C.Lamanna, G.W.Ordal, and L.L.Kiessling (2005).
Large increases in attractant concentration disrupt the polar localization of bacterial chemoreceptors.
  Mol Microbiol, 57, 774-785.  
15766389 A.Chalah, and R.M.Weis (2005).
Site-specific and synergistic stimulation of methylation on the bacterial chemotaxis receptor Tsr by serine and CheW.
  BMC Microbiol, 5, 12.  
16319927 A.Marina, C.D.Waldburger, and W.A.Hendrickson (2005).
Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein.
  EMBO J, 24, 4247-4259.
PDB code: 2c2a
16230637 C.A.Studdert, and J.S.Parkinson (2005).
Insights into the organization and dynamics of bacterial chemoreceptor clusters through in vivo crosslinking studies.
  Proc Natl Acad Sci U S A, 102, 15623-15628.  
15683239 D.J.Starrett, and J.J.Falke (2005).
Adaptation mechanism of the aspartate receptor: electrostatics of the adaptation subdomain play a key role in modulating kinase activity.
  Biochemistry, 44, 1550-1560.  
16267289 D.Shiomi, S.Banno, M.Homma, and I.Kawagishi (2005).
Stabilization of polar localization of a chemoreceptor via its covalent modifications and its communication with a different chemoreceptor.
  J Bacteriol, 187, 7647-7654.  
16157581 E.Bordignon, J.P.Klare, M.Doebber, A.A.Wegener, S.Martell, M.Engelhard, and H.J.Steinhoff (2005).
Structural analysis of a HAMP domain: the linker region of the phototransducer in complex with sensory rhodopsin II.
  J Biol Chem, 280, 38767-38775.  
15728358 J.S.Kim, A.DeGiovanni, J.Jancarik, P.D.Adams, H.Yokota, R.Kim, and S.H.Kim (2005).
Crystal structure of DNA sequence specificity subunit of a type I restriction-modification enzyme and its functional implications.
  Proc Natl Acad Sci U S A, 102, 3248-3253.
PDB code: 1yf2
15802240 J.S.Parkinson, P.Ames, and C.A.Studdert (2005).
Collaborative signaling by bacterial chemoreceptors.
  Curr Opin Microbiol, 8, 116-121.  
15909983 M.D.Coleman, R.B.Bass, R.S.Mehan, and J.J.Falke (2005).
Conserved glycine residues in the cytoplasmic domain of the aspartate receptor play essential roles in kinase coupling and on-off switching.
  Biochemistry, 44, 7687-7695.  
15911619 N.Sal-Man, D.Gerber, and Y.Shai (2005).
The identification of a minimal dimerization motif QXXS that enables homo- and hetero-association of transmembrane helices in vivo.
  J Biol Chem, 280, 27449-27457.  
16048998 P.Brodin, Jonge, L.Majlessi, C.Leclerc, M.Nilges, S.T.Cole, and R.Brosch (2005).
Functional analysis of early secreted antigenic target-6, the dominant T-cell antigen of Mycobacterium tuberculosis, reveals key residues involved in secretion, complex formation, virulence, and immunogenicity.
  J Biol Chem, 280, 33953-33959.  
15601703 Q.Ma, M.S.Johnson, and B.L.Taylor (2005).
Genetic analysis of the HAMP domain of the Aer aerotaxis sensor localizes flavin adenine dinucleotide-binding determinants to the AS-2 helix.
  J Bacteriol, 187, 193-201.  
16171380 S.E.Winston, R.Mehan, and J.J.Falke (2005).
Evidence that the adaptation region of the aspartate receptor is a dynamic four-helix bundle: cysteine and disulfide scanning studies.
  Biochemistry, 44, 12655-12666.  
16012515 S.M.Butler, and A.Camilli (2005).
Going against the grain: chemotaxis and infection in Vibrio cholerae.
  Nat Rev Microbiol, 3, 611-620.  
15853891 S.R.Lybarger, U.Nair, A.A.Lilly, G.L.Hazelbauer, and J.R.Maddock (2005).
Clustering requires modified methyl-accepting sites in low-abundance but not high-abundance chemoreceptors of Escherichia coli.
  Mol Microbiol, 56, 1078-1086.  
15976817 U.Jenal, R.E.Silversmith, L.Sogaard-Andersen, and L.Sockett (2005).
Sense and sensibility in bacteria. VIIIth International Conference on Bacterial Locomotion and Sensory Transduction.
  EMBO Rep, 6, 615-619.  
16030204 W.C.Lai, and G.L.Hazelbauer (2005).
Carboxyl-terminal extensions beyond the conserved pentapeptide reduce rates of chemoreceptor adaptational modification.
  J Bacteriol, 187, 5115-5121.  
15653746 W.Zhang, J.S.Olson, and G.N.Phillips (2005).
Biophysical and kinetic characterization of HemAT, an aerotaxis receptor from Bacillus subtilis.
  Biophys J, 88, 2801-2814.  
14967017 A.S.Miller, and J.J.Falke (2004).
Side chains at the membrane-water interface modulate the signaling state of a transmembrane receptor.
  Biochemistry, 43, 1763-1770.  
14769919 C.A.Studdert, and J.S.Parkinson (2004).
Crosslinking snapshots of bacterial chemoreceptor squads.
  Proc Natl Acad Sci U S A, 101, 2117-2122.  
15262967 C.S.Yang, O.Sineshchekov, E.N.Spudich, and J.L.Spudich (2004).
The cytoplasmic membrane-proximal domain of the HtrII transducer interacts with the E-F loop of photoactivated Natronomonas pharaonis sensory rhodopsin II.
  J Biol Chem, 279, 42970-42976.  
15139804 D.Bray, and T.Duke (2004).
Conformational spread: the propagation of allosteric states in large multiprotein complexes.
  Annu Rev Biophys Biomol Struct, 33, 53-73.  
15066034 D.R.Hendrixson, and V.J.DiRita (2004).
Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract.
  Mol Microbiol, 52, 471-484.  
15516567 F.M.Antommattei, J.B.Munzner, and R.M.Weis (2004).
Ligand-specific activation of Escherichia coli chemoreceptor transmethylation.
  J Bacteriol, 186, 7556-7563.  
15573139 G.H.Wadhams, and J.P.Armitage (2004).
Making sense of it all: bacterial chemotaxis.
  Nat Rev Mol Cell Biol, 5, 1024-1037.  
15187186 H.Szurmant, and G.W.Ordal (2004).
Diversity in chemotaxis mechanisms among the bacteria and archaea.
  Microbiol Mol Biol Rev, 68, 301-319.  
15262942 J.Lefman, P.Zhang, T.Hirai, R.M.Weis, J.Juliani, D.Bliss, M.Kessel, E.Bos, P.J.Peters, and S.Subramaniam (2004).
Three-dimensional electron microscopic imaging of membrane invaginations in Escherichia coli overproducing the chemotaxis receptor Tsr.
  J Bacteriol, 186, 5052-5061.  
15489456 K.J.Watts, Q.Ma, M.S.Johnson, and B.L.Taylor (2004).
Interactions between the PAS and HAMP domains of the Escherichia coli aerotaxis receptor Aer.
  J Bacteriol, 186, 7440-7449.  
15272163 K.N.Rao, C.G.Suresh, U.V.Katre, S.M.Gaikwad, and M.I.Khan (2004).
Two orthorhombic crystal structures of a galactose-specific lectin from Artocarpus hirsuta in complex with methyl-alpha-D-galactose.
  Acta Crystallogr D Biol Crystallogr, 60, 1404-1412.
PDB codes: 1toq 1tp8
14993606 M.Homma, D.Shiomi, M.Homma, and I.Kawagishi (2004).
Attractant binding alters arrangement of chemoreceptor dimers within its cluster at a cell pole.
  Proc Natl Acad Sci U S A, 101, 3462-3467.  
15175281 M.Li, and G.L.Hazelbauer (2004).
Cellular stoichiometry of the components of the chemotaxis signaling complex.
  J Bacteriol, 186, 3687-3694.  
14731274 M.W.Bunn, and G.W.Ordal (2004).
Receptor conformational changes enhance methylesterase activity during chemotaxis by Bacillus subtilis.
  Mol Microbiol, 51, 721-728.  
15572451 N.R.Francis, P.M.Wolanin, J.B.Stock, D.J.Derosier, and D.R.Thomas (2004).
Three-dimensional structure and organization of a receptor/signaling complex.
  Proc Natl Acad Sci U S A, 101, 17480-17485.  
15203024 P.M.Wolanin, and J.B.Stock (2004).
Bacterial chemosensing: cooperative molecular logic.
  Curr Biol, 14, R486-R487.  
15306010 S.Banno, D.Shiomi, M.Homma, and I.Kawagishi (2004).
Targeting of the chemotaxis methylesterase/deamidase CheB to the polar receptor-kinase cluster in an Escherichia coli cell.
  Mol Microbiol, 53, 1051-1063.  
15466030 S.Herrmann, Q.Ma, M.S.Johnson, A.V.Repik, and B.L.Taylor (2004).
PAS domain of the Aer redox sensor requires C-terminal residues for native-fold formation and flavin adenine dinucleotide binding.
  J Bacteriol, 186, 6782-6791.  
15042093 V.Sourjik, and H.C.Berg (2004).
Functional interactions between receptors in bacterial chemotaxis.
  Nature, 428, 437-441.  
15539117 V.Sourjik (2004).
Receptor clustering and signal processing in E. coli chemotaxis.
  Trends Microbiol, 12, 569-576.  
12553885 C.K.Yost, K.T.Clark, K.L.Del Bel, and M.F.Hynes (2003).
Characterization of the nodulation plasmid encoded chemoreceptor gene mcpG from Rhizobium leguminosarum.
  BMC Microbiol, 3, 1.  
12713898 D.D.Oprian (2003).
Phototaxis, chemotaxis and the missing link.
  Trends Biochem Sci, 28, 167-169.  
12595268 J.A.Bornhorst, and J.J.Falke (2003).
Quantitative analysis of aspartate receptor signaling complex reveals that the homogeneous two-state model is inadequate: development of a heterogeneous two-state model.
  J Mol Biol, 326, 1597-1614.  
12651741 K.R.Ryan, and L.Shapiro (2003).
Temporal and spatial regulation in prokaryotic cell cycle progression and development.
  Annu Rev Biochem, 72, 367-394.  
12775701 R.M.Weis, T.Hirai, A.Chalah, M.Kessel, P.J.Peters, and S.Subramaniam (2003).
Electron microscopic analysis of membrane assemblies formed by the bacterial chemotaxis receptor Tsr.
  J Bacteriol, 185, 3636-3643.  
12627961 R.S.Mehan, N.C.White, and J.J.Falke (2003).
Mapping out regions on the surface of the aspartate receptor that are essential for kinase activation.
  Biochemistry, 42, 2952-2959.  
12962628 W.Zhang, and G.N.Phillips (2003).
Structure of the oxygen sensor in Bacillus subtilis: signal transduction of chemotaxis by control of symmetry.
  Structure, 11, 1097-1110.
PDB codes: 1or4 1or6
12021446 A.Barnakov, C.Altenbach, L.Barnakova, W.L.Hubbell, and G.L.Hazelbauer (2002).
Site-directed spin labeling of a bacterial chemoreceptor reveals a dynamic, loosely packed transmembrane domain.
  Protein Sci, 11, 1472-1481.  
12193613 A.C.Lamanna, J.E.Gestwicki, L.E.Strong, S.L.Borchardt, R.M.Owen, and L.L.Kiessling (2002).
Conserved amplification of chemotactic responses through chemoreceptor interactions.
  J Bacteriol, 184, 4981-4987.  
12142407 A.Ferrández, A.C.Hawkins, D.T.Summerfield, and C.S.Harwood (2002).
Cluster II che genes from Pseudomonas aeruginosa are required for an optimal chemotactic response.
  J Bacteriol, 184, 4374-4383.  
12196531 A.N.Barnakov, L.A.Barnakova, and G.L.Hazelbauer (2002).
Allosteric enhancement of adaptational demethylation by a carboxyl-terminal sequence on chemoreceptors.
  J Biol Chem, 277, 42151-42156.  
12101179 D.Shiomi, I.B.Zhulin, M.Homma, and I.Kawagishi (2002).
Dual recognition of the bacterial chemoreceptor by chemotaxis-specific domains of the CheR methyltransferase.
  J Biol Chem, 277, 42325-42333.  
11799399 I.J.Griswold, H.Zhou, M.Matison, R.V.Swanson, L.P.McIntosh, M.I.Simon, and F.W.Dahlquist (2002).
The solution structure and interactions of CheW from Thermotoga maritima.
  Nat Struct Biol, 9, 121-125.
PDB code: 1k0s
11856841 I.Lee, N.K.Lokanath, K.Min, S.C.Ha, D.Y.Kim, and K.K.Kim (2002).
Cloning, purification, crystallization and preliminary X-ray studies of RFC boxes II-VIII of replication factor C from Methanococcus jannaschii.
  Acta Crystallogr D Biol Crystallogr, 58, 519-521.  
12426352 I.Potocka, M.Thein, M.ØSterås, U.Jenal, and M.R.Alley (2002).
Degradation of a Caulobacter soluble cytoplasmic chemoreceptor is ClpX dependent.
  J Bacteriol, 184, 6635-6641.  
12011417 J.J.Falke (2002).
Cooperativity between bacterial chemotaxis receptors.
  Proc Natl Acad Sci U S A, 99, 6530-6532.  
12402035 J.Spudich (2002).
Spotlight on receptor/transducer interaction.
  Nat Struct Biol, 9, 797-799.  
11937052 K.Edman, A.Royant, P.Nollert, C.A.Maxwell, E.Pebay-Peyroula, J.Navarro, R.Neutze, and E.M.Landau (2002).
Early structural rearrangements in the photocycle of an integral membrane sensory receptor.
  Structure, 10, 473-482.
PDB codes: 1gu8 1gue
11964403 M.Boukhvalova, R.VanBruggen, and R.C.Stewart (2002).
CheA kinase and chemoreceptor interaction surfaces on CheW.
  J Biol Chem, 277, 23596-23603.  
11916840 M.D.Levin, T.S.Shimizu, and D.Bray (2002).
Binding and diffusion of CheR molecules within a cluster of membrane receptors.
  Biophys J, 82, 1809-1817.  
11910034 M.L.Peach, G.L.Hazelbauer, and T.P.Lybrand (2002).
Modeling the transmembrane domain of bacterial chemoreceptors.
  Protein Sci, 11, 912-923.  
12119289 M.N.Levit, T.W.Grebe, and J.B.Stock (2002).
Organization of the receptor-kinase signaling array that regulates Escherichia coli chemotaxis.
  J Biol Chem, 277, 36748-36754.  
12119290 N.R.Francis, M.N.Levit, T.R.Shaikh, L.A.Melanson, J.B.Stock, and D.J.DeRosier (2002).
Subunit organization in a soluble complex of tar, CheW, and CheA by electron microscopy.
  J Biol Chem, 277, 36755-36759.  
12062075 P.A.Thomason, P.M.Wolanin, and J.B.Stock (2002).
Signal transduction: receptor clusters as information processing arrays.
  Curr Biol, 12, R399-R401.  
11983857 P.Ames, C.A.Studdert, R.H.Reiser, and J.S.Parkinson (2002).
Collaborative signaling by mixed chemoreceptor teams in Escherichia coli.
  Proc Natl Acad Sci U S A, 99, 7060-7065.  
11741839 R.B.Bourret, N.W.Charon, A.M.Stock, and A.H.West (2002).
Bright lights, abundant operons--fluorescence and genomic technologies advance studies of bacterial locomotion and signal transduction: review of the BLAST meeting, Cuernavaca, Mexico, 14 to 19 January 2001.
  J Bacteriol, 184, 1.  
12186970 S.H.Kim, W.Wang, and K.K.Kim (2002).
Dynamic and clustering model of bacterial chemotaxis receptors: structural basis for signaling and high sensitivity.
  Proc Natl Acad Sci U S A, 99, 11611-11615.  
11994152 S.M.Ward, A.Delgado, R.P.Gunsalus, and M.D.Manson (2002).
A NarX-Tar chimera mediates repellent chemotaxis to nitrate and nitrite.
  Mol Microbiol, 44, 709-719.  
12368857 V.I.Gordeliy, J.Labahn, R.Moukhametzianov, R.Efremov, J.Granzin, R.Schlesinger, G.Büldt, T.Savopol, A.J.Scheidig, J.P.Klare, and M.Engelhard (2002).
Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex.
  Nature, 419, 484-487.
PDB code: 1h2s
11985722 W.Tao, C.L.Malone, A.D.Ault, R.J.Deschenes, and J.S.Fassler (2002).
A cytoplasmic coiled-coil domain is required for histidine kinase activity of the yeast osmosensor, SLN1.
  Mol Microbiol, 43, 459-473.  
11133962 B.D.Beel, and G.L.Hazelbauer (2001).
Substitutions in the periplasmic domain of low-abundance chemoreceptor trg that induce or reduce transmembrane signaling: kinase activation and context effects.
  J Bacteriol, 183, 671-679.  
11401690 B.D.Beel, and G.L.Hazelbauer (2001).
Signalling substitutions in the periplasmic domain of chemoreceptor Trg induce or reduce helical sliding in the transmembrane domain.
  Mol Microbiol, 40, 824-834.  
11761333 B.L.Taylor, A.Rebbapragada, and M.S.Johnson (2001).
The FAD-PAS domain as a sensor for behavioral responses in Escherichia coli.
  Antioxid Redox Signal, 3, 867-879.  
11714274 C.S.Yang, and J.L.Spudich (2001).
Light-induced structural changes occur in the transmembrane helices of the Natronobacterium pharaonis HtrII transducer.
  Biochemistry, 40, 14207-14214.  
  11158168 D.M.Cortes, L.G.Cuello, and E.Perozo (2001).
Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating.
  J Gen Physiol, 117, 165-180.
PDB code: 1f6g
  11723162 J.A.Bornhorst, and J.J.Falke (2001).
Evidence that both ligand binding and covalent adaptation drive a two-state equilibrium in the aspartate receptor signaling complex.
  J Gen Physiol, 118, 693-710.  
11295559 J.J.Falke, and G.L.Hazelbauer (2001).
Transmembrane signaling in bacterial chemoreceptors.
  Trends Biochem Sci, 26, 257-265.  
11489852 J.W.Tsai, and M.R.Alley (2001).
Proteolysis of the Caulobacter McpA chemoreceptor is cell cycle regulated by a ClpX-dependent pathway.
  J Bacteriol, 183, 5001-5007.  
11344336 J.Walshaw, and D.N.Woolfson (2001).
Open-and-shut cases in coiled-coil assembly: alpha-sheets and alpha-cylinders.
  Protein Sci, 10, 668-673.  
11669630 K.R.Rodgers, L.Tang, G.S.Lukat-Rodgers, and N.L.Wengenack (2001).
Insights into the signal transduction mechanism of RmFixL provided by carbon monoxide recombination kinetics.
  Biochemistry, 40, 12932-12942.  
11442832 M.R.Alley (2001).
The highly conserved domain of the Caulobacter McpA chemoreceptor is required for its polar localization.
  Mol Microbiol, 40, 1335-1343.  
11553619 O.J.Murphy, X.Yi, R.M.Weis, and L.K.Thompson (2001).
Hydrogen exchange reveals a stable and expandable core within the aspartate receptor cytoplasmic domain.
  J Biol Chem, 276, 43262-43269.  
11092844 A.Bren, and M.Eisenbach (2000).
How signals are heard during bacterial chemotaxis: protein-protein interactions in sensory signal propagation.
  J Bacteriol, 182, 6865-6873.  
10844669 A.Repik, A.Rebbapragada, M.S.Johnson, J.O.Haznedar, I.B.Zhulin, and B.L.Taylor (2000).
PAS domain residues involved in signal transduction by the Aer redox sensor of Escherichia coli.
  Mol Microbiol, 36, 806-816.  
10760170 D.Shiomi, H.Okumura, M.Homma, and I.Kawagishi (2000).
The aspartate chemoreceptor Tar is effectively methylated by binding to the methyltransferase mainly through hydrophobic interaction.
  Mol Microbiol, 36, 132-140.  
10924144 J.A.Bornhorst, and J.J.Falke (2000).
Attractant regulation of the aspartate receptor-kinase complex: limited cooperative interactions between receptors and effects of the receptor modification state.
  Biochemistry, 39, 9486-9493.  
10981636 J.J.Falke, and S.H.Kim (2000).
Structure of a conserved receptor domain that regulates kinase activity: the cytoplasmic domain of bacterial taxis receptors.
  Curr Opin Struct Biol, 10, 462-469.  
11031241 J.L.Spudich, C.S.Yang, K.H.Jung, and E.N.Spudich (2000).
Retinylidene proteins: structures and functions from archaea to humans.
  Annu Rev Cell Dev Biol, 16, 365-392.  
10660286 J.Stock, and M.Levit (2000).
Signal transduction: hair brains in bacterial chemotaxis.
  Curr Biol, 10, R11-R14.  
10819979 J.Xiong, D.M.Kurtz, J.Ai, and J.Sanders-Loehr (2000).
A hemerythrin-like domain in a bacterial chemotaxis protein.
  Biochemistry, 39, 5117-5125.  
  10637292 M.Bezanilla, and T.D.Pollard (2000).
Myosin-II tails confer unique functions in Schizosaccharomyces pombe: characterization of a novel myosin-II tail.
  Mol Biol Cell, 11, 79-91.  
10859356 S.R.Lybarger, and J.R.Maddock (2000).
Differences in the polar clustering of the high- and low-abundance chemoreceptors of Escherichia coli.
  Proc Natl Acad Sci U S A, 97, 8057-8062.  
10972797 V.Sourjik, and H.C.Berg (2000).
Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions.
  Mol Microbiol, 37, 740-751.  
10933390 W.W.Schamel, and M.Reth (2000).
Monomeric and oligomeric complexes of the B cell antigen receptor.
  Immunity, 13, 5.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.