Figure 1 - full size

 

Figure 1.
Fig. 1. Backbone substitution requirements for SH3 and WW domain recognition. (A) Structural mapping of alanine and sarcosine scanning results (Table 1). Peptide/domain complex interfaces (8, 9) shown schematically. Ligands adopt a PPII conformation, depicted schematically as a triangular prism. Residue positions (spheres) are color-coded by class: white--does not require either C^ - or N-substitution (alanine and sarcosine tolerant); green--requires C^ -substitution (alanine tolerant, sarcosine intolerant); orange--requires N-substitution (sarcosine tolerant, alanine intolerant). (B) Minimally sufficient recognition unit for SH3 and WW domain binding grooves. Schematic view of a single binding groove cross-section, looking down the PPII helical axis (viewed from left side of Fig. 1A). Minimally required atoms defined in this study, a sequential pair of C^ - and N-substituted residues, are solid black. The van der Waals binding surface that these atoms present is shaded. (C) Distinct mechanisms of proline recognition. Proline can be recognized by a lock and key mechanism, utilizing the full chemical potential of the side chain. In contrast, SH3 and WW domains recognized key prolines based on N-substitution. This mechanism utilizes relatively little of the binding potential of ligand or protein (hatched surface) but is still highly discriminatory for proline among natural amino acids.

The above figure is reprinted by permission from the AAAs: Science (1998, 282, 2088-2092) copyright 1998.