spacer
spacer

PDBsum entry 6h3c

Go to PDB code: 
Top Page protein metals Protein-protein interface(s) links
Signaling protein PDB id
6h3c
Contents
Protein chains
255 a.a.
258 a.a.
383 a.a.
237 a.a.
440 a.a.
Metals
_ZN ×2
Waters ×6

References listed in PDB file
Key reference
Title Structural basis of brcc36 function in DNA repair and immune regulation.
Authors J.Rabl, R.D.Bunker, A.D.Schenk, S.Cavadini, M.E.Gill, W.Abdulrahman, A.Andrés-Pons, M.S.Luijsterburg, A.F.M.Ibrahim, E.Branigan, J.D.Aguirre, A.H.Marceau, C.Guérillon, T.Bouwmeester, U.Hassiepen, A.H.F.M.Peters, M.Renatus, L.Gelman, S.M.Rubin, N.Mailand, H.Van attikum, R.T.Hay, N.H.Thomä.
Ref. Mol Cell, 2019, 75, 483. [DOI no: 10.1016/j.molcel.2019.06.002]
PubMed id 31253574
Abstract
In mammals, ∼100 deubiquitinases act on ∼20,000 intracellular ubiquitination sites. Deubiquitinases are commonly regarded as constitutively active, with limited regulatory and targeting capacity. The BRCA1-A and BRISC complexes serve in DNA double-strand break repair and immune signaling and contain the lysine-63 linkage-specific BRCC36 subunit that is functionalized by scaffold subunits ABRAXAS and ABRO1, respectively. The molecular basis underlying BRCA1-A and BRISC function is currently unknown. Here we show that in the BRCA1-A complex structure, ABRAXAS integrates the DNA repair protein RAP80 and provides a high-affinity binding site that sequesters the tumor suppressor BRCA1 away from the break site. In the BRISC structure, ABRO1 binds SHMT2α, a metabolic enzyme enabling cancer growth in hypoxic environments, which we find prevents BRCC36 from binding and cleaving ubiquitin chains. Our work explains modularity in the BRCC36 DUB family, with different adaptor subunits conferring diversified targeting and regulatory functions.
PROCHECK
Go to PROCHECK summary
 Headers

 

spacer

spacer