spacer
spacer

PDBsum entry 5wxf

Go to PDB code: 
Top Page protein ligands Protein-protein interface(s) links
Hydrolase/hydrolase inhibitor PDB id
5wxf
Contents
Protein chains
246 a.a.
12 a.a.
Ligands
SO4
Waters ×180

References listed in PDB file
Key reference
Title Cleavage of peptidic inhibitors by target protease is caused by peptide conformational transition.
Authors L.Jiang, E.Oldenburg, T.Kromann-Hansen, P.Xu, J.K.Jensen, P.A.Andreasen, M.Huang.
Ref. Biochim Biophys Acta, 2018, 1862, 2017-2023. [DOI no: 10.1016/j.bbagen.2018.06.016]
PubMed id 29959058
Note: In the PDB file this reference is annotated as "TO BE PUBLISHED". The citation details given above have been manually determined.
Abstract
Some peptide sequences can behave as either substrates or inhibitors of serine proteases. Working with a cyclic peptidic inhibitor of the serine protease urokinase-type plasminogen activator (uPA), we have now demonstrated a new mechanism for an inhibitor-to-substrate switch. The peptide, CSWRGLENHAAC (upain-2), is a competitive inhibitor of human uPA, but is also slowly converted to a substrate in which the bond between Arg4 and Gly5 (the P1-P1' bond) is cleaved. Substituting the P2 residue Trp3 to an Ala or substituting the P1 Arg4 residue with 4-guanidino-phenylalanine strongly increased the substrate cleavage rate. We studied the structural basis for the inhibitor-to-substrate switch by determining the crystal structures of the various peptide variants in complex with the catalytic domain of uPA. While the slowly cleaved peptides bound clearly in inhibitory mode, with the oxyanion hole blocked by the side chain of the P3' residue Glu7, peptides behaving essentially as substrates with a much accelerated rate of cleavage was observed to be bound to the enzyme in substrate mode. Our analysis reveals that the inhibitor-to-substrate switch was associated with a 7 Å translocation of the P2 residue, and we conclude that the inhibitor-to-substrate switch of upain-2 is a result of a major conformational change in the enzyme-bound state of the peptide. This conclusion is in contrast to findings with so-called standard mechanism inhibitors in which the inhibitor-to-substrate switch is linked to minor conformational changes in the backbone of the inhibitory peptide stretch.
PROCHECK
Go to PROCHECK summary
 Headers

 

spacer

spacer