spacer
spacer

PDBsum entry 5i40

Go to PDB code: 
Top Page protein ligands links
RNA binding protein PDB id
5i40
Contents
Protein chain
102 a.a.
Ligands
EDO ×4
PEG
67N
Waters ×199

References listed in PDB file
Key reference
Title Diving into the water: inducible binding conformations for brd4, Taf1(2), Brd9, And cecr2 bromodomains.
Authors T.D.Crawford, V.Tsui, E.M.Flynn, S.Wang, A.M.Taylor, A.Côté, J.E.Audia, M.H.Beresini, D.J.Burdick, R.Cummings, L.A.Dakin, M.Duplessis, A.C.Good, M.C.Hewitt, H.R.Huang, H.Jayaram, J.R.Kiefer, Y.Jiang, J.Murray, C.G.Nasveschuk, E.Pardo, F.Poy, F.A.Romero, Y.Tang, J.Wang, Z.Xu, L.E.Zawadzke, X.Zhu, B.K.Albrecht, S.R.Magnuson, S.Bellon, A.G.Cochran.
Ref. J Med Chem, 2016, 59, 5391-5402. [DOI no: 10.1021/acs.jmedchem.6b00264]
PubMed id 27219867
Abstract
The biological role played by non-BET bromodomains remains poorly understood, and it is therefore imperative to identify potent and highly selective inhibitors to effectively explore the biology of individual bromodomain proteins. A ligand-efficient nonselective bromodomain inhibitor was identified from a 6-methyl pyrrolopyridone fragment. Small hydrophobic substituents replacing the N-methyl group were designed directing toward the conserved bromodomain water pocket, and two distinct binding conformations were then observed. The substituents either directly displaced and rearranged the conserved solvent network, as in BRD4(1) and TAF1(2), or induced a narrow hydrophobic channel adjacent to the lipophilic shelf, as in BRD9 and CECR2. The preference of distinct substituents for individual bromodomains provided selectivity handles useful for future lead optimization efforts for selective BRD9, CECR2, and TAF1(2) inhibitors.
PROCHECK
Go to PROCHECK summary
 Headers

 

spacer

spacer