spacer
spacer

PDBsum entry 5i2r

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase PDB id
5i2r

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
313 a.a.
Ligands
67A ×4
Metals
_ZN ×4
_MG ×4
Waters ×517
PDB id:
5i2r
Name: Hydrolase
Title: Crystal structure of human phosphodiesterase 10 in complex with c2(=nn(c1cccc(c1)oc(f)(f)f)c=cc2=o)c3ccnn3c4ccccc4, micromolar ic50=0.019462
Structure: Camp and camp-inhibited cgmp 3',5'-cyclic phosphodiesterase 10a. Chain: a, b, c, d. Fragment: unp residues 457-773. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: pde10a. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Resolution:
2.50Å     R-factor:   0.194     R-free:   0.250
Authors: C.Joseph,M.Koerner,M.G.Rudolph
Key ref: B.Kuhn et al. (2016). A Real-World Perspective on Molecular Design. J Med Chem, 59, 4087-4102. PubMed id: 26878596 DOI: 10.1021/acs.jmedchem.5b01875
Date:
09-Feb-16     Release date:   09-Mar-16    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q9Y233  (PDE10_HUMAN) -  cAMP and cAMP-inhibited cGMP 3',5'-cyclic phosphodiesterase 10A from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1055 a.a.
313 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.3.1.4.17  - 3',5'-cyclic-nucleotide phosphodiesterase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a nucleoside 3',5'-cyclic phosphate + H2O = a nucleoside 5'-phosphate + H+
nucleoside 3',5'-cyclic phosphate
+ H2O
= nucleoside 5'-phosphate
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1021/acs.jmedchem.5b01875 J Med Chem 59:4087-4102 (2016)
PubMed id: 26878596  
 
 
A Real-World Perspective on Molecular Design.
B.Kuhn, W.Guba, J.Hert, D.Banner, C.Bissantz, S.Ceccarelli, W.Haap, M.Körner, A.Kuglstatter, C.Lerner, P.Mattei, W.Neidhart, E.Pinard, M.G.Rudolph, T.Schulz-Gasch, T.Woltering, M.Stahl.
 
  ABSTRACT  
 
We present a series of small molecule drug discovery case studies where computational methods were prospectively employed to impact Roche research projects, with the aim of highlighting those methods that provide real added value. Our brief accounts encompass a broad range of methods and techniques applied to a variety of enzymes and receptors. Most of these are based on judicious application of knowledge about molecular conformations and interactions: filling of lipophilic pockets to gain affinity or selectivity, addition of polar substituents, scaffold hopping, transfer of SAR, conformation analysis, and molecular overlays. A case study of sequence-driven focused screening is presented to illustrate how appropriate preprocessing of information enables effective exploitation of prior knowledge. We conclude that qualitative statements enabling chemists to focus on promising regions of chemical space are often more impactful than quantitative prediction.
 

 

spacer

spacer