spacer
spacer

PDBsum entry 5eh2

Go to PDB code: 
protein dna_rna metals Protein-protein interface(s) links
Transcription/DNA PDB id
5eh2

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
110 a.a.
DNA/RNA
Metals
_ZN ×8
Waters ×122
PDB id:
5eh2
Name: Transcription/DNA
Title: Human prdm9 allele-a znf domain with associated recombination hotspot DNA sequence iii
Structure: DNA (5'- d( Ap Cp Ap Cp Gp Tp Gp Gp Cp Tp Ap Gp Gp Gp Ap Gp Gp Cp Cp Tp C)- 3'). Chain: c, a. Engineered: yes. DNA (5'- d( Tp Gp Ap Gp Gp Cp Cp Tp Cp Cp Cp Tp Ap Gp Cp Cp Ap Cp Gp Tp G)- 3'). Chain: d, b.
Source: Synthetic: yes. Homo sapiens. Human. Organism_taxid: 9606. Variant: alelle-a. Gene: prdm9, pfm6. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
2.05Å     R-factor:   0.202     R-free:   0.231
Authors: A.Patel,J.R.Horton,G.G.Wilson,X.Zhang,X.Cheng
Key ref: A.Patel et al. (2016). Structural basis for human PRDM9 action at recombination hot spots. Genes Dev, 30, 257-265. PubMed id: 26833727 DOI: 10.1101/gad.274928.115
Date:
27-Oct-15     Release date:   17-Feb-16    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q9NQV7  (PRDM9_HUMAN) -  Histone-lysine N-methyltransferase PRDM9 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
894 a.a.
110 a.a.
Key:    PfamA domain  Secondary structure

DNA/RNA chains
  A-C-A-C-G-T-G-G-C-T-A-G-G-G-A-G-G-C-C-T-C 21 bases
  T-G-A-G-G-C-C-T-C-C-C-T-A-G-C-C-A-C-G-T-G 21 bases
  A-C-A-C-G-T-G-G-C-T-A-G-G-G-A-G-G-C-C-T-C 21 bases
  T-G-A-G-G-C-C-T-C-C-C-T-A-G-C-C-A-C-G-T-G 21 bases

 Enzyme reactions 
   Enzyme class 1: E.C.2.1.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: E.C.2.1.1.354  - [histone H3]-lysine(4) N-trimethyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-lysyl4-[histone H3] + 3 S-adenosyl-L-methionine = N6,N6,N6- trimethyl-L-lysyl4-[histone H3] + 3 S-adenosyl-L-homocysteine + 3 H+
L-lysyl(4)-[histone H3]
+ 3 × S-adenosyl-L-methionine
= N(6),N(6),N(6)- trimethyl-L-lysyl(4)-[histone H3]
+ 3 × S-adenosyl-L-homocysteine
+ 3 × H(+)
   Enzyme class 3: E.C.2.1.1.355  - [histone H3]-lysine(9) N-trimethyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-lysyl9-[histone H3] + 3 S-adenosyl-L-methionine = N6,N6,N6- trimethyl-L-lysyl9-[histone H3] + 3 S-adenosyl-L-homocysteine + 3 H+
L-lysyl(9)-[histone H3]
+ 3 × S-adenosyl-L-methionine
= N(6),N(6),N(6)- trimethyl-L-lysyl(9)-[histone H3]
+ 3 × S-adenosyl-L-homocysteine
+ 3 × H(+)
   Enzyme class 4: E.C.2.1.1.359  - [histone H3]-lysine(36) N-trimethyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-lysyl36-[histone H3] + 3 S-adenosyl-L-methionine = N6,N6,N6- trimethyl-L-lysyl36-[histone H3] + 3 S-adenosyl-L-homocysteine + 3 H+
L-lysyl(36)-[histone H3]
+ 3 × S-adenosyl-L-methionine
= N(6),N(6),N(6)- trimethyl-L-lysyl(36)-[histone H3]
+ 3 × S-adenosyl-L-homocysteine
+ 3 × H(+)
   Enzyme class 5: E.C.2.1.1.361  - [histone H4]-lysine(20) N-methyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-lysyl20-[histone H4] + S-adenosyl-L-methionine = N6-methyl-L- lysyl20-[histone H4] + S-adenosyl-L-homocysteine + H+
L-lysyl(20)-[histone H4]
+ 3 × S-adenosyl-L-methionine
= N(6)-methyl-L- lysyl(20)-[histone H4]
+ 3 × S-adenosyl-L-homocysteine
+ 3 × H(+)
   Enzyme class 6: E.C.2.1.1.362  - [histone H4]-N-methyl-L-lysine(20) N-methyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: N6-methyl-L-lysyl20-[histone H4] + S-adenosyl-L-methionine = N6,N6-dimethyl-L-lysyl20-[histone H4] + S-adenosyl-L-homocysteine + H+
N(6)-methyl-L-lysyl(20)-[histone H4]
+ 3 × S-adenosyl-L-methionine
= N(6),N(6)-dimethyl-L-lysyl(20)-[histone H4]
+ 3 × S-adenosyl-L-homocysteine
+ 3 × H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1101/gad.274928.115 Genes Dev 30:257-265 (2016)
PubMed id: 26833727  
 
 
Structural basis for human PRDM9 action at recombination hot spots.
A.Patel, J.R.Horton, G.G.Wilson, X.Zhang, X.Cheng.
 
  ABSTRACT  
 
The multidomain zinc finger (ZnF) protein PRDM9 (PRD1-BF1-RIZ1 homologous domain-containing 9) is thought to influence the locations of recombination hot spots during meiosis by sequence-specific DNA binding and trimethylation of histone H3 Lys4. The most common variant of human PRDM9, allele A (hPRDM9A), recognizes the consensus sequence 5'-NCCNCCNTNNCCNCN-3'. We cocrystallized ZnF8-12 of hPRDM9A with an oligonucleotide representing a known hot spot sequence and report the structure here. ZnF12 was not visible, but ZnF8-11, like other ZnF arrays, follows the right-handed twist of the DNA, with the α helices occupying the major groove. Each α helix makes hydrogen-bond (H-bond) contacts with up to four adjacent bases, most of which are purines of the complementary DNA strand. The consensus C:G base pairs H-bond with conserved His or Arg residues in ZnF8, ZnF9, and ZnF11, and the consensus T:A base pair H-bonds with an Asn that replaces His in ZnF10. Most of the variable base pairs (N) also engage in H bonds with the protein. These interactions appear to compensate to some extent for changes from the consensus sequence, implying an adaptability of PRDM9 to sequence variations. We investigated the binding of various alleles of hPRDM9 to different hot spot sequences. Allele C was found to bind a C-specific hot spot with higher affinity than allele A bound A-specific hot spots, perhaps explaining why the former is dominant in A/C heterozygotes. Allele L13 displayed higher affinity for several A-specific sequences, allele L9/L24 displayed lower affinity, and allele L20 displayed an altered sequence preference. These differences can be rationalized structurally and might contribute to the variation observed in the locations and activities of meiotic recombination hot spots.
 

 

spacer

spacer