spacer
spacer

PDBsum entry 5ktq

Go to PDB code: 
protein ligands links
Transferase PDB id
5ktq

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
534 a.a. *
Ligands
DCP
* Residue conservation analysis
PDB id:
5ktq
Name: Transferase
Title: Large fragment of taq DNA polymerase bound to dctp
Structure: Protein (DNA polymerase i). Chain: a. Engineered: yes
Source: Thermus aquaticus. Organism_taxid: 271. Strain: x7029. Gene: taq. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
2.50Å     R-factor:   0.217     R-free:   0.280
Authors: Y.Li,Y.Kong,S.Korolev,G.Waksman
Key ref:
Y.Li et al. (1998). Crystal structures of the Klenow fragment of Thermus aquaticus DNA polymerase I complexed with deoxyribonucleoside triphosphates. Protein Sci, 7, 1116-1123. PubMed id: 9605316 DOI: 10.1002/pro.5560070505
Date:
22-Sep-98     Release date:   30-Sep-98    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P19821  (DPO1_THEAQ) -  DNA polymerase I, thermostable from Thermus aquaticus
Seq:
Struc:
 
Seq:
Struc:
832 a.a.
534 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1002/pro.5560070505 Protein Sci 7:1116-1123 (1998)
PubMed id: 9605316  
 
 
Crystal structures of the Klenow fragment of Thermus aquaticus DNA polymerase I complexed with deoxyribonucleoside triphosphates.
Y.Li, Y.Kong, S.Korolev, G.Waksman.
 
  ABSTRACT  
 
The crystal structures of the Klenow fragment of the Thermus aquaticus DNA polymerase I (Klentaq1) complexed with four deoxyribonucleoside triphosphates (dNTP) have been determined to 2.5 A resolution. The dNTPs bind adjacent to the O helix of Klentaq1. The triphosphate moieties are at nearly identical positions in all four complexes and are anchored by three positively charged residues, Arg659, Lys663, and Arg587, and by two polar residues, His639 and Gln613. The configuration of the base moieties in the Klentaq1/dNTP complexes demonstrates variability suggesting that dNTP binding is primarily determined by recognition and binding of the phosphate moiety. However, when superimposed on the Taq polymerase/blunt end DNA complex structure (Eom et al., 1996), two of the dNTP/Klentaq1 structures demonstrate appropriate stacking of the nucleotide base with the 3' end of the DNA primer strand, suggesting that at least in these two binary complexes, the observed dNTP conformations are functionally relevant.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. A: Schematic representation of the secondary structure of Klentaql bound with dAW. The small vestigial 3â-5â exonuclease domain is shown in yellow and the polymerase domaiins shown in green. The secondarys tructure elements are labeled according to the notation of Ollise t al. (1985). The helix 0 is shown in blue and tdhAeT P molecule in red. The side chains of the three carboxylates, Asp610, Asp785, Asp786, which form the catalytic core are shown in purple. This figure was prepared using MOLSCRIPT and RASTER3D (Merritt 8c Murphy, 1994; Kraulis, 1991). B: Superimposition of the binary complex of Klentaql bound to dCTP (this work; in purple) with the binary complex of E. coli Klenow Pol I bound to dCTP ((Beese et al., 1993); in pink). C Superimposition of d N T P s in the four Klentaql/dNTP binary complexes. The binary complexoefs Klentaql with dATP (green), dTTP (yellow), dCTP (magenta), dGTP (cyan) were superimposed. The positions of the triphosphaotef st he dNTP in the four complexa re nearly identical, while those for the sugar and base differ. The orientation of the side chain of Qr671 also differs in the four binary complexes. D: Superimposition of the Klentaql/dCTP binary complex structure (in purple) with the Taq/DNA complex structure of Eom et al. (1996) (in yellow for the protein, and white and blue for the template/primer DNA strands, respectively). The dCTP base is seen in a stacking arrangement with the 3â end base of the primer strand, suggesting that this complex is functionally relevant. (Figure continues on facing page.)
Figure 3.
Fig. 3. Distances bwteen the nucleotides and interacting protein side chains. Only potential H-bonds are shown. A: Klentaql with dATP. B: Klentaql with dCTP. C: Klentaql with dGTP. D: Klentaql with dTTP.
 
  The above figures are reprinted from an Open Access publication published by the Protein Society: Protein Sci (1998, 7, 1116-1123) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20111609 M.Yokoyama, H.Mori, and H.Sato (2010).
Allosteric regulation of HIV-1 reverse transcriptase by ATP for nucleotide selection.
  PLoS One, 5, e8867.  
  20847947 R.G.Federley, and L.J.Romano (2010).
DNA polymerase: structural homology, conformational dynamics, and the effects of carcinogenic DNA adducts.
  J Nucleic Acids, 2010, 0.  
21123743 S.Obeid, A.Baccaro, W.Welte, K.Diederichs, and A.Marx (2010).
Structural basis for the synthesis of nucleobase modified DNA by Thermus aquaticus DNA polymerase.
  Proc Natl Acad Sci U S A, 107, 21327-21331.
PDB codes: 3ojs 3oju
20080740 Y.Santoso, C.M.Joyce, O.Potapova, L.Le Reste, J.Hohlbein, J.P.Torella, N.D.Grindley, and A.N.Kapanidis (2010).
Conformational transitions in DNA polymerase I revealed by single-molecule FRET.
  Proc Natl Acad Sci U S A, 107, 715-720.  
19773426 A.L.Mikheikin, H.K.Lin, P.Mehta, L.Jen-Jacobson, and M.A.Trakselis (2009).
A trimeric DNA polymerase complex increases the native replication processivity.
  Nucleic Acids Res, 37, 7194-7205.  
19167347 D.C.Tahmassebi, and D.P.Millar (2009).
Fluorophore-quencher pair for monitoring protein motion.
  Biochem Biophys Res Commun, 380, 277-280.  
19642651 J.N.Patro, M.Urban, and R.D.Kuchta (2009).
Interaction of human DNA polymerase alpha and DNA polymerase I from Bacillus stearothermophilus with hypoxanthine and 8-oxoguanine nucleotides.
  Biochemistry, 48, 8271-8278.  
19275265 N.Hurt, H.Wang, M.Akeson, and K.R.Lieberman (2009).
Specific nucleotide binding and rebinding to individual DNA polymerase complexes captured on a nanopore.
  J Am Chem Soc, 131, 3772-3778.  
18847263 G.T.Hwang, and F.E.Romesberg (2008).
Unnatural substrate repertoire of A, B, and X family DNA polymerases.
  J Am Chem Soc, 130, 14872-14882.  
18287276 W.J.Allen, P.J.Rothwell, and G.Waksman (2008).
An intramolecular FRET system monitors fingers subdomain opening in Klentaq1.
  Protein Sci, 17, 401-408.  
17611604 A.J.Berman, S.Kamtekar, J.L.Goodman, J.M.Lázaro, M.de Vega, L.Blanco, M.Salas, and T.A.Steitz (2007).
Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases.
  EMBO J, 26, 3494-3505.
PDB codes: 2py5 2pyj 2pyl 2pzs
17118716 M.E.Arana, K.Takata, M.Garcia-Diaz, R.D.Wood, and T.A.Kunkel (2007).
A unique error signature for human DNA polymerase nu.
  DNA Repair (Amst), 6, 213-223.  
17652326 O.Adelfinskaya, M.Terrazas, M.Froeyen, P.Marlière, K.Nauwelaerts, and P.Herdewijn (2007).
Polymerase-catalyzed synthesis of DNA from phosphoramidate conjugates of deoxynucleotides and amino acids.
  Nucleic Acids Res, 35, 5060-5072.  
17052458 R.T.Pomerantz, D.Temiakov, M.Anikin, D.G.Vassylyev, and W.T.McAllister (2006).
A mechanism of nucleotide misincorporation during transcription due to template-strand misalignment.
  Mol Cell, 24, 245-255.  
16061181 P.J.Rothwell, V.Mitaksov, and G.Waksman (2005).
Motions of the fingers subdomain of klentaq1 are fast and not rate limiting: implications for the molecular basis of fidelity in DNA polymerases.
  Mol Cell, 19, 345-355.  
16140780 R.Chen, M.Yokoyama, H.Sato, C.Reilly, and L.M.Mansky (2005).
Human immunodeficiency virus mutagenesis during antiviral therapy: impact of drug-resistant reverse transcriptase and nucleoside and nonnucleoside reverse transcriptase inhibitors on human immunodeficiency virus type 1 mutation frequencies.
  J Virol, 79, 12045-12057.  
15016373 D.Temiakov, V.Patlan, M.Anikin, W.T.McAllister, S.Yokoyama, and D.G.Vassylyev (2004).
Structural basis for substrate selection by t7 RNA polymerase.
  Cell, 116, 381-391.
PDB code: 1s0v
15345530 I.Andricioaei, A.Goel, D.Herschbach, and M.Karplus (2004).
Dependence of DNA polymerase replication rate on external forces: a model based on molecular dynamics simulations.
  Biophys J, 87, 1478-1497.  
15065652 T.A.Steitz, and Y.W.Yin (2004).
Accuracy, lesion bypass, strand displacement and translocation by DNA polymerases.
  Philos Trans R Soc Lond B Biol Sci, 359, 17-23.  
15016374 Y.W.Yin, and T.A.Steitz (2004).
The structural mechanism of translocation and helicase activity in T7 RNA polymerase.
  Cell, 116, 393-404.
PDB codes: 1s76 1s77
14522052 N.Paul, V.C.Nashine, G.Hoops, P.Zhang, J.Zhou, D.E.Bergstrom, and V.J.Davisson (2003).
DNA polymerase template interactions probed by degenerate isosteric nucleobase analogs.
  Chem Biol, 10, 815-825.  
12649320 S.J.Johnson, J.S.Taylor, and L.S.Beese (2003).
Processive DNA synthesis observed in a polymerase crystal suggests a mechanism for the prevention of frameshift mutations.
  Proc Natl Acad Sci U S A, 100, 3895-3900.
PDB codes: 1l3s 1l3t 1l3u 1l3v 1l5u 1lv5
11566124 W.A.Beard, and S.H.Wilson (2001).
DNA lesion bypass polymerases open up.
  Structure, 9, 759-764.  
11369861 Y.Li, and G.Waksman (2001).
Crystal structures of a ddATP-, ddTTP-, ddCTP, and ddGTP- trapped ternary complex of Klentaq1: insights into nucleotide incorporation and selectivity.
  Protein Sci, 10, 1225-1233.  
10047577 J.Jäger, and J.D.Pata (1999).
Getting a grip: polymerases and their substrate complexes.
  Curr Opin Struct Biol, 9, 21-28.  
9843396 D.Arion, N.Kaushik, S.McCormick, G.Borkow, and M.A.Parniak (1998).
Phenotypic mechanism of HIV-1 resistance to 3'-azido-3'-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase.
  Biochemistry, 37, 15908-15917.  
9914251 S.Doublié, and T.Ellenberger (1998).
The mechanism of action of T7 DNA polymerase.
  Curr Opin Struct Biol, 8, 704-712.  
9857206 Y.Li, S.Korolev, and G.Waksman (1998).
Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation.
  EMBO J, 17, 7514-7525.
PDB codes: 2ktq 3ktq 4ktq
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer