spacer
spacer

PDBsum entry 4urz

Go to PDB code: 
Top Page protein ligands Protein-protein interface(s) links
Signaling protein PDB id
4urz
Contents
Protein chains
167 a.a.
455 a.a.
Ligands
VJP
Waters ×247

References listed in PDB file
Key reference
Title Small molecule binding sites on the ras:sos complex can be exploited for inhibition of ras activation.
Authors J.J.Winter, M.Anderson, K.Blades, C.Brassington, A.L.Breeze, C.Chresta, K.Embrey, G.Fairley, P.Faulder, M.R.Finlay, J.G.Kettle, T.Nowak, R.Overman, S.J.Patel, P.Perkins, L.Spadola, J.Tart, J.A.Tucker, G.Wrigley.
Ref. J Med Chem, 2015, 58, 2265-2274. [DOI no: 10.1021/jm501660t]
PubMed id 25695162
Abstract
Constitutively active mutant KRas displays a reduced rate of GTP hydrolysis via both intrinsic and GTPase-activating protein-catalyzed mechanisms, resulting in the perpetual activation of Ras pathways. We describe a fragment screening campaign using X-ray crystallography that led to the discovery of three fragment binding sites on the Ras:SOS complex. The identification of tool compounds binding at each of these sites allowed exploration of two new approaches to Ras pathway inhibition by stabilizing or covalently modifying the Ras:SOS complex to prevent the reloading of Ras with GTP. Initially, we identified ligands that bound reversibly to the Ras:SOS complex in two distinct sites, but these compounds were not sufficiently potent inhibitors to validate our stabilization hypothesis. We conclude by demonstrating that covalent modification of Cys118 on Ras leads to a novel mechanism of inhibition of the SOS-mediated interaction between Ras and Raf and is effective at inhibiting the exchange of labeled GDP in both mutant (G12C and G12V) and wild type Ras.
PROCHECK
Go to PROCHECK summary
 Headers

 

spacer

spacer