spacer
spacer

PDBsum entry 4p33

Go to PDB code: 
Top Page protein ligands metals Protein-protein interface(s) links
Hydrolase PDB id
4p33
Contents
Protein chains
235 a.a.
Ligands
ATP ×2
GOL ×5
Metals
_NA ×2
Waters ×149

References listed in PDB file
Key reference
Title Decoupling catalytic activity from biological function of the atpase that powers lipopolysaccharide transport.
Authors D.J.Sherman, M.B.Lazarus, L.Murphy, C.Liu, S.Walker, N.Ruiz, D.Kahne.
Ref. Proc Natl Acad Sci U S A, 2014, 111, 4982-4987. [DOI no: 10.1073/pnas.1323516111]
PubMed id 24639492
Abstract
The cell surface of Gram-negative bacteria contains lipopolysaccharides (LPS), which provide a barrier against the entry of many antibiotics. LPS assembly involves a multiprotein LPS transport (Lpt) complex that spans from the cytoplasm to the outer membrane. In this complex, an unusual ATP-binding cassette transporter is thought to power the extraction of LPS from the outer leaflet of the cytoplasmic membrane and its transport across the cell envelope. We introduce changes into the nucleotide-binding domain, LptB, that inactivate transporter function in vivo. We characterize these residues using biochemical experiments combined with high-resolution crystal structures of LptB pre- and post-ATP hydrolysis and suggest a role for an active site residue in phosphate exit. We also identify a conserved residue that is not required for ATPase activity but is essential for interaction with the transmembrane components. Our studies establish the essentiality of ATP hydrolysis by LptB to power LPS transport in cells and suggest strategies to inhibit transporter function away from the LptB active site.
PROCHECK
Go to PROCHECK summary
 Headers

 

spacer

spacer