spacer
spacer

PDBsum entry 4mln

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase PDB id
4mln

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
182 a.a.
182 a.a.
Ligands
ODV ×2
Metals
_FE ×4
Waters ×138
PDB id:
4mln
Name: Hydrolase
Title: Crystal of phnz bound to (r)-2-amino-1-hydroxyethylphosphonic acid
Structure: Predicted hd phosphohydrolase phnz. Chain: a, b. Engineered: yes
Source: Uncultured bacterium hf130_aepn_1. Organism_taxid: 663362. Gene: aloha_hf130_aepn_1_06c. Expressed in: escherichia coli. Expression_system_taxid: 469008.
Resolution:
2.10Å     R-factor:   0.199     R-free:   0.254
Authors: L.M.Van Staalduinen,F.R.Mcsorley,D.L.Zechel,Z.Jia,Montreal-Kingston Bacterial Structural Genomics Initiative (Bsgi)
Key ref: L.M.van Staalduinen et al. (2014). Crystal structure of PhnZ in complex with substrate reveals a di-iron oxygenase mechanism for catabolism of organophosphonates. Proc Natl Acad Sci U S A, 111, 5171-5176. PubMed id: 24706911 DOI: 10.1073/pnas.1320039111
Date:
06-Sep-13     Release date:   16-Apr-14    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
D0E8I5  (PHNZ_UNCHF) -  2-amino-1-hydroxyethylphosphonate dioxygenase (glycine-forming) from Uncultured bacterium HF130_AEPn_1
Seq:
Struc:
190 a.a.
182 a.a.
Protein chain
Pfam   ArchSchema ?
D0E8I5  (PHNZ_UNCHF) -  2-amino-1-hydroxyethylphosphonate dioxygenase (glycine-forming) from Uncultured bacterium HF130_AEPn_1
Seq:
Struc:
190 a.a.
182 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains A, B: E.C.1.13.11.78  - 2-amino-1-hydroxyethylphosphonate dioxygenase (glycine-forming).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: (1R)-(2-amino-1-hydroxyethyl)phosphonate + O2 = glycine + phosphate + 2 H+
(1R)-(2-amino-1-hydroxyethyl)phosphonate
+ O2
=
glycine
Bound ligand (Het Group name = ODV)
matches with 44.44% similarity
+ phosphate
+ 2 × H(+)
      Cofactor: Fe(2+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1073/pnas.1320039111 Proc Natl Acad Sci U S A 111:5171-5176 (2014)
PubMed id: 24706911  
 
 
Crystal structure of PhnZ in complex with substrate reveals a di-iron oxygenase mechanism for catabolism of organophosphonates.
L.M.van Staalduinen, F.R.McSorley, K.Schiessl, J.Séguin, P.B.Wyatt, F.Hammerschmidt, D.L.Zechel, Z.Jia.
 
  ABSTRACT  
 
The enzymes PhnY and PhnZ comprise an oxidative catabolic pathway that enables marine bacteria to use 2-aminoethylphosphonic acid as a source of inorganic phosphate. PhnZ is notable for catalyzing the oxidative cleavage of a carbon-phosphorus bond using Fe(II) and dioxygen, despite belonging to a large family of hydrolytic enzymes, the HD-phosphohydrolase superfamily. We have determined high-resolution structures of PhnZ bound to its substrate, (R)-2-amino-1-hydroxyethylphosphonate (2.1 Å), and a buffer additive, l-tartrate (1.7 Å). The structures reveal PhnZ to have an active site containing two Fe ions coordinated by four histidines and two aspartates that is strikingly similar to the carbon-carbon bond cleaving enzyme, myo-inositol-oxygenase. The exception is Y24, which forms a transient ligand interaction at the dioxygen binding site of Fe2. Site-directed mutagenesis and kinetic analysis with substrate analogs revealed the roles of key active site residues. A fifth histidine that is conserved in the PhnZ subclade, H62, specifically interacts with the substrate 1-hydroxyl. The structures also revealed that Y24 and E27 mediate a unique induced-fit mechanism whereby E27 specifically recognizes the 2-amino group of the bound substrate and toggles the release of Y24 from the active site, thereby creating space for molecular oxygen to bind to Fe2. Structural comparisons of PhnZ reveal an evolutionary connection between Fe(II)-dependent hydrolysis of phosphate esters and oxidative carbon-phosphorus or carbon-carbon bond cleavage, thus uniting the diverse chemistries that are found in the HD superfamily.
 

 

spacer

spacer