spacer
spacer

PDBsum entry 4gy5

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Ligase PDB id
4gy5

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
215 a.a.
154 a.a.
Ligands
ALA-ARG-THR-LYS-
GLN-THR-ALA-ARG-
M3L-SER
ALA-ARG-THR-LYS-
GLN-THR-ALA-ARG-
M3L
Metals
_ZN ×7
Waters ×10
PDB id:
4gy5
Name: Ligase
Title: Crystal structure of the tandem tudor domain and plant homeodomain of uhrf1 with histone h3k9me3
Structure: E3 ubiquitin-protein ligase uhrf1. Chain: a, b, c, d. Fragment: tudor phd domain, unp residues 134-366. Synonym: uhrf1. Engineered: yes. Peptide from histone h3.3. Chain: e, f. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: uhrf1. Expressed in: escherichia coli. Expression_system_taxid: 562. Synthetic: yes. Other_details: this sequence occurs naturally in humans
Resolution:
2.96Å     R-factor:   0.257     R-free:   0.288
Authors: J.Cheng,Y.Yang,J.Fang,J.Xiao,T.Zhu,F.Chen,P.Wang,Y.Xu
Key ref: J.Cheng et al. (2013). Structural insight into coordinated recognition of trimethylated histone H3 lysine 9 (H3K9me3) by the plant homeodomain (PHD) and tandem tudor domain (TTD) of UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) protein. J Biol Chem, 288, 1329-1339. PubMed id: 23161542
Date:
05-Sep-12     Release date:   14-Nov-12    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q96T88  (UHRF1_HUMAN) -  E3 ubiquitin-protein ligase UHRF1 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
793 a.a.
215 a.a.*
Protein chains
Pfam   ArchSchema ?
Q96T88  (UHRF1_HUMAN) -  E3 ubiquitin-protein ligase UHRF1 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
793 a.a.
154 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D: E.C.2.3.2.27  - RING-type E3 ubiquitin transferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: S-ubiquitinyl-[E2 ubiquitin-conjugating enzyme]-L-cysteine + [acceptor protein]-L-lysine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + N6- ubiquitinyl-[acceptor protein]-L-lysine

 

 
J Biol Chem 288:1329-1339 (2013)
PubMed id: 23161542  
 
 
Structural insight into coordinated recognition of trimethylated histone H3 lysine 9 (H3K9me3) by the plant homeodomain (PHD) and tandem tudor domain (TTD) of UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) protein.
J.Cheng, Y.Yang, J.Fang, J.Xiao, T.Zhu, F.Chen, P.Wang, Z.Li, H.Yang, Y.Xu.
 
  ABSTRACT  
 
UHRF1 is an important epigenetic regulator connecting DNA methylation and histone methylations. UHRF1 is required for maintenance of DNA methylation through recruiting DNMT1 to DNA replication forks. Recent studies have shown that the plant homeodomain (PHD) of UHRF1 recognizes the N terminus of unmodified histone H3, and the interaction is inhibited by methylation of H3R2, whereas the tandem tudor domain (TTD) of UHRF1 recognizes trimethylated histone H3 lysine 9 (H3K9me3). However, how the two domains of UHRF1 coordinately recognize histone methylations remains elusive. In this report, we identified that PHD largely enhances the interaction between TTD and H3K9me3. We present the crystal structure of UHRF1 containing both TTD and PHD (TTD-PHD) in complex with H3K9m3 peptide at 3.0 Å resolution. The structure shows that TTD-PHD binds to the H3K9me3 peptide with 1:1 stoichiometry with the two domains connected by the H3K9me3 peptide and a linker region. The TTD interacts with residues Arg-8 and trimethylated Lys-9, and the PHD interacts with residues Ala-1, Arg-2, and Lys-4 of the H3K9me3 peptide. The biochemical experiments indicate that PHD-mediated recognition of unmodified H3 is independent of the TTD, whereas TTD-mediated recognition of H3K9me3 PHD. Thus, both TTD and PHD are essential for specific recognition of H3K9me3 by UHRF1. Interestingly, the H3K9me3 peptide induces conformational changes of TTD-PHD, which do not affect the autoubiquitination activity or hemimethylated DNA binding affinity of UHRF1 in vitro. Taken together, our studies provide structural insight into the coordinated recognition of H3K9me3 by the TTD and PHD of UHRF1.
 

 

spacer

spacer