spacer
spacer

PDBsum entry 3l3n

Go to PDB code: 
Top Page protein ligands metals links
Hydrolase PDB id
3l3n
Jmol
Contents
Protein chain
575 a.a.
Ligands
NAG-NAG-FUC
LSW
Metals
_ZN
_CL ×2
Waters ×176

References listed in PDB file
Key reference
Title Characterization of domain-Selective inhibitor binding in angiotensin-Converting enzyme using a novel derivative of lisinopril.
Authors J.M.Watermeyer, W.L.Kröger, H.G.O'Neill, B.T.Sewell, E.D.Sturrock.
Ref. Biochem J, 2010, 428, 67-74.
PubMed id 20233165
Abstract
Human ACE (angiotensin-converting enzyme) (EC 3.4.15.1) is an important drug target because of its role in the regulation of blood pressure via the renin-angiotensin-aldosterone system. Somatic ACE comprises two homologous domains, the differing substrate preferences of which present a new avenue for domain-selective inhibitor design. We have co-crystallized lisW-S, a C-domain-selective derivative of the drug lisinopril, with human testis ACE and determined a structure using X-ray crystallography to a resolution of 2.30 A (1 A=0.1 nm). In this structure, lisW-S is seen to have a similar binding mode to its parent compound lisinopril, but the P2' tryptophan moiety takes a different conformation to that seen in other inhibitors having a tryptophan residue in this position. We have examined further the domain-specific interactions of this inhibitor by mutating C-domain-specific active-site residues to their N domain equivalents, then assessing the effect of the mutation on inhibition by lisW-S using a fluorescence-based assay. Kinetics analysis shows a 258-fold domain-selectivity that is largely due to the co-operative effect of C-domain-specific residues in the S2' subsite. The high affinity and selectivity of this inhibitor make it a good lead candidate for cardiovascular drug development.
PROCHECK
Go to PROCHECK summary
 Headers