spacer
spacer

PDBsum entry 3kds

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Metal binding protein PDB id
3kds

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
427 a.a. *
Ligands
NHX ×3
Metals
_ZN ×3
* Residue conservation analysis
PDB id:
3kds
Name: Metal binding protein
Title: Apo-ftsh crystal structure
Structure: Cell division protein ftsh. Chain: e, f, g. Fragment: cytosolic region, residues 146-610. Engineered: yes. Mutation: yes
Source: Thermotoga maritima. Organism_taxid: 2336. Gene: ftsh. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Resolution:
2.60Å     R-factor:   0.226     R-free:   0.287
Authors: C.Bieniossek,B.Niederhauser,U.Baumann
Key ref: C.Bieniossek et al. (2009). The crystal structure of apo-FtsH reveals domain movements necessary for substrate unfolding and translocation. Proc Natl Acad Sci U S A, 106, 21579-21584. PubMed id: 19955424
Date:
23-Oct-09     Release date:   01-Dec-09    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q9WZ49  (FTSH_THEMA) -  ATP-dependent zinc metalloprotease FtsH from Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8)
Seq:
Struc:
 
Seq:
Struc:
610 a.a.
427 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.3.4.24.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
Proc Natl Acad Sci U S A 106:21579-21584 (2009)
PubMed id: 19955424  
 
 
The crystal structure of apo-FtsH reveals domain movements necessary for substrate unfolding and translocation.
C.Bieniossek, B.Niederhauser, U.M.Baumann.
 
  ABSTRACT  
 
The hexameric membrane-spanning ATP-dependent metalloprotease FtsH is universally conserved in eubacteria, mitochondria, and chloroplasts, where it fulfills key functions in quality control and signaling. As a member of the self-compartmentalizing ATPases associated with various cellular activities (AAA+ proteases), FtsH converts the chemical energy stored in ATP via conformational rearrangements into a mechanical force that is used for substrate unfolding and translocation into the proteolytic chamber. The crystal structure of the ADP state of Thermotoga maritima FtsH showed a hexameric assembly consisting of a 6-fold symmetric protease disk and a 2-fold symmetric AAA ring. The 2.6 A resolution structure of the cytosolic region of apo-FtsH presented here reveals a new arrangement where the ATPase ring shows perfect 6-fold symmetry with the crucial pore residues lining an open circular entrance. Triggered by this conformational change, a substrate-binding edge beta strand appears within the proteolytic domain. Comparison of the apo- and ADP-bound structure visualizes an inward movement of the aromatic pore residues and generates a model of substrate translocation by AAA+ proteases. Furthermore, we demonstrate that mutation of a conserved glycine in the linker region inactivates FtsH.
 

 

spacer

spacer