spacer
spacer

PDBsum entry 3iyl

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Virus PDB id
3iyl

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
(+ 4 more) 41 a.a. *
(+ 4 more) 604 a.a. *
411 a.a. *
1284 a.a. *
1018 a.a. *
1154 a.a. *
Ligands
MYR ×10
* Residue conservation analysis
PDB id:
3iyl
Name: Virus
Title: Atomic cryoem structure of a nonenveloped virus suggests how membrane penetration protein is primed for cell entry
Structure: Outer capsid vp4. Chain: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t. Core protein vp6. Chain: u, v. Vp1. Chain: w. Vp3. Chain: x, y
Source: Grass carp reovirus. Organism_taxid: 128987. Organism_taxid: 128987
Authors: X.Zhang,L.Jin,Q.Fang,W.Hui,Z.H.Zhou
Key ref: X.Zhang et al. (2010). 3.3 A cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell, 141, 472-482. PubMed id: 20398923
Date:
02-Feb-10     Release date:   12-May-10    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Q8JU67  (Q8JU67_AQRVC) - 
Protein chains
Q8JU67  (Q8JU67_AQRVC) - 
Protein chains
Q8JU64  (Q8JU64_AQRVC) - 
Protein chain
Q9E3W0  (Q9E3W0_AQRVC) - 
Protein chain
Q9E3V8  (Q9E3V8_AQRVC) - 
Protein chain
Q9E3V8  (Q9E3V8_AQRVC) - 
Key:    Secondary structure

 

 
Cell 141:472-482 (2010)
PubMed id: 20398923  
 
 
3.3 A cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry.
X.Zhang, L.Jin, Q.Fang, W.H.Hui, Z.H.Zhou.
 
  ABSTRACT  
 
To achieve cell entry, many nonenveloped viruses must transform from a dormant to a primed state. In contrast to the membrane fusion mechanism of enveloped viruses (e.g., influenza virus), this membrane penetration mechanism is poorly understood. Here, using single-particle cryo-electron microscopy, we report a 3.3 A structure of the primed, infectious subvirion particle of aquareovirus. The density map reveals side-chain densities of all types of amino acids (except glycine), enabling construction of a full-atom model of the viral particle. Our structure and biochemical results show that priming involves autocleavage of the membrane penetration protein and suggest that Lys84 and Glu76 may facilitate this autocleavage in a nucleophilic attack. We observe a myristoyl group, covalently linked to the N terminus of the penetration protein and embedded in a hydrophobic pocket. These results suggest a well-orchestrated process of nonenveloped virus entry involving autocleavage of the penetration protein prior to exposure of its membrane-insertion finger.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
22864288 Y.Mao, L.Wang, C.Gu, A.Herschhorn, S.H.Xiang, H.Haim, X.Yang, and J.Sodroski (2012).
Subunit organization of the membrane-bound HIV-1 envelope glycoprotein trimer.
  Nat Struct Mol Biol, 19, 893-899.  
21157433 E.C.Settembre, J.Z.Chen, P.R.Dormitzer, N.Grigorieff, and S.C.Harrison (2011).
Atomic model of an infectious rotavirus particle.
  EMBO J, 30, 408-416.
PDB codes: 3iyu 3n09
21220303 L.Cheng, J.Sun, K.Zhang, Z.Mou, X.Huang, G.Ji, F.Sun, J.Zhang, and P.Zhu (2011).
Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping.
  Proc Natl Acad Sci U S A, 108, 1373-1378.
PDB code: 3iz3
21525648 M.Karuppasamy, F.Karimi Nejadasl, M.Vulovic, A.J.Koster, and R.B.Ravelli (2011).
Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate.
  J Synchrotron Radiat, 18, 398-412.  
21296162 M.L.Baker, S.S.Abeysinghe, S.Schuh, R.A.Coleman, A.Abrams, M.P.Marsh, C.F.Hryc, T.Ruths, W.Chiu, and T.Ju (2011).
Modeling protein structure at near atomic resolutions with Gorgon.
  J Struct Biol, 174, 360-373.  
21333526 N.Grigorieff, and S.C.Harrison (2011).
Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy.
  Curr Opin Struct Biol, 21, 265-273.  
21182964 R.M.Glaeser, D.Typke, P.C.Tiemeijer, J.Pulokas, and A.Cheng (2011).
Precise beam-tilt alignment and collimation are required to minimize the phase error associated with coma in high-resolution cryo-EM.
  J Struct Biol, 174, 1.  
21338175 S.A.Claridge, J.J.Schwartz, and P.S.Weiss (2011).
Electrons, photons, and force: quantitative single-molecule measurements from physics to biology.
  ACS Nano, 5, 693-729.  
20827723 K.Lasker, A.Sali, and H.J.Wolfson (2010).
Determining macromolecular assembly structures by molecular docking and fitting into an electron density map.
  Proteins, 78, 3205-3211.  
20844487 T.Fujii, A.H.Iwane, T.Yanagida, and K.Namba (2010).
Direct visualization of secondary structures of F-actin by electron cryomicroscopy.
  Nature, 467, 724-728.
PDB code: 3mfp
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer