UniProt functional annotation for P10600

UniProt code: P10600.

Organism: Homo sapiens (Human).
Taxonomy: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo.
 
Function: Transforming growth factor beta-3 proprotein: Precursor of the Latency-associated peptide (LAP) and Transforming growth factor beta-3 (TGF-beta-3) chains, which constitute the regulatory and active subunit of TGF-beta-3, respectively. {ECO:0000250|UniProtKB:P01137, ECO:0000250|UniProtKB:P04202}.
 
Function: [Latency-associated peptide]: Required to maintain the Transforming growth factor beta-3 (TGF-beta-3) chain in a latent state during storage in extracellular matrix (By similarity). Associates non- covalently with TGF-beta-3 and regulates its activation via interaction with 'milieu molecules', such as LTBP1 and LRRC32/GARP, that control activation of TGF-beta-3 (By similarity). Interaction with integrins results in distortion of the Latency-associated peptide chain and subsequent release of the active TGF-beta-3 (By similarity). {ECO:0000250|UniProtKB:P01137, ECO:0000250|UniProtKB:P04202, ECO:0000250|UniProtKB:P17125}.
 
Function: Transforming growth factor beta-3: Multifunctional protein that regulates embryogenesis and cell differentiation and is required in various processes such as secondary palate development (By similarity). Activation into mature form follows different steps: following cleavage of the proprotein in the Golgi apparatus, Latency- associated peptide (LAP) and Transforming growth factor beta-3 (TGF- beta-3) chains remain non-covalently linked rendering TGF-beta-3 inactive during storage in extracellular matrix (By similarity). At the same time, LAP chain interacts with 'milieu molecules', such as LTBP1 and LRRC32/GARP that control activation of TGF-beta-3 and maintain it in a latent state during storage in extracellular milieus (By similarity). TGF-beta-3 is released from LAP by integrins: integrin- binding results in distortion of the LAP chain and subsequent release of the active TGF-beta-3 (By similarity). Once activated following release of LAP, TGF-beta-3 acts by binding to TGF-beta receptors (TGFBR1 and TGFBR2), which transduce signal (By similarity). {ECO:0000250|UniProtKB:P01137, ECO:0000250|UniProtKB:P04202, ECO:0000250|UniProtKB:P17125}.
 
Subunit: Interacts with ASPN (PubMed:8819159). Latency-associated peptide: Homodimer; disulfide-linked. Latency-associated peptide: Interacts with Transforming growth factor beta-3 (TGF-beta-3) chain; interaction is non-covalent and maintains (TGF-beta-3) in a latent state (By similarity). Latency-associated peptide: Interacts with LRRC32/GARP; leading to regulate activation of TGF-beta-3 and promote epithelial fusion during palate development (By similarity). Latency- associated peptide: Interacts (via cell attachment site) with integrins, leading to release of the active TGF-beta-3 (By similarity). Transforming growth factor beta-3: Homodimer; disulfide-linked (PubMed:8819159). Transforming growth factor beta-3: Interacts with TGF-beta receptors (TGFBR1 and TGFBR2), leading to signal transduction (By similarity). {ECO:0000250|UniProtKB:P01137, ECO:0000250|UniProtKB:P04202, ECO:0000250|UniProtKB:P17125, ECO:0000269|PubMed:8819159}.
Subcellular location: [Latency-associated peptide]: Secreted, extracellular space, extracellular matrix {ECO:0000250|UniProtKB:P01137}.
Subcellular location: [Transforming growth factor beta-3]: Secreted {ECO:0000250|UniProtKB:P01137}.
Ptm: Transforming growth factor beta-3 proprotein: The precursor proprotein is cleaved in the Golgi apparatus to form Transforming growth factor beta-3 (TGF-beta-3) and Latency-associated peptide (LAP) chains, which remain non-covalently linked, rendering TGF-beta-3 inactive. {ECO:0000250|UniProtKB:P01137}.
Ptm: Methylated at Gln-293 by N6AMT1. {ECO:0000269|PubMed:26797129}.
Disease: Arrhythmogenic right ventricular dysplasia, familial, 1 (ARVD1) [MIM:107970]: A congenital heart disease characterized by infiltration of adipose and fibrous tissue into the right ventricle and loss of myocardial cells, resulting in ventricular and supraventricular arrhythmias. {ECO:0000269|PubMed:15639475}. Note=The disease is caused by variants affecting the gene represented in this entry.
Disease: Loeys-Dietz syndrome 5 (LDS5) [MIM:615582]: A form of Loeys- Dietz syndrome, a syndrome with widespread systemic involvement characterized by arterial tortuosity and aneurysms, hypertelorism, and bifid uvula or cleft palate. LDS5 additional variable features include mitral valve disease, skeletal overgrowth, cervical spine instability, and clubfoot deformity. LDS5 patients do not manifest remarkable aortic or arterial tortuosity, and there is no strong evidence for early aortic dissection. {ECO:0000269|PubMed:23824657}. Note=The disease is caused by variants affecting the gene represented in this entry.
Similarity: Belongs to the TGF-beta family. {ECO:0000305}.
Sequence caution: Sequence=CAA33024.1; Type=Erroneous initiation; Note=Truncated N-terminus.; Evidence={ECO:0000305};

Annotations taken from UniProtKB at the EBI.