spacer
spacer

PDBsum entry 3edu

Go to PDB code: 
protein links
Structural protein PDB id
3edu

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
191 a.a. *
Waters ×136
* Residue conservation analysis
PDB id:
3edu
Name: Structural protein
Title: Crystal structure of the ankyrin-binding domain of human erythroid spectrin
Structure: Spectrin beta chain, erythrocyte. Chain: a. Fragment: spectrin 14-spectrin 15 di-repeat. Synonym: beta-i spectrin. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: sptb, sptb1. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
2.10Å     R-factor:   0.215     R-free:   0.252
Authors: M.Simonovic,P.Stabach,I.Simonovic,T.A.Steitz,J.S.Morrow
Key ref: P.R.Stabach et al. (2009). The structure of the ankyrin-binding site of beta-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties. Blood, 113, 5377-5384. PubMed id: 19168783
Date:
03-Sep-08     Release date:   10-Feb-09    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P11277  (SPTB1_HUMAN) -  Spectrin beta chain, erythrocytic from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
2137 a.a.
191 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 

 
Blood 113:5377-5384 (2009)
PubMed id: 19168783  
 
 
The structure of the ankyrin-binding site of beta-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties.
P.R.Stabach, I.Simonović, M.A.Ranieri, M.S.Aboodi, T.A.Steitz, M.Simonović, J.S.Morrow.
 
  ABSTRACT  
 
Spectrin and ankyrin participate in membrane organization, stability, signal transduction, and protein targeting; their interaction is critical for erythrocyte stability. Repeats 14 and 15 of betaI-spectrin are crucial for ankyrin recognition, yet the way spectrin binds ankyrin while preserving its repeat structure is unknown. We have solved the crystal structure of the betaI-spectrin 14,15 di-repeat unit to 2.1 A resolution and found 14 residues critical for ankyrin binding that map to the end of the helix C of repeat 14, the linker region, and the B-C loop of repeat 15. The tilt (64 degrees) across the 14,15 linker is greater than in any published di-repeat structure, suggesting that the relative positioning of the two repeats is important for ankyrin binding. We propose that a lack of structural constraints on linker and inter-helix loops allows proteins containing spectrin-like di-repeats to evolve diverse but specific ligand-recognition sites without compromising the structure of the repeat unit. The linker regions between repeats are thus critical determinants of both spectrin's flexibility and polyfunctionality. The putative coupling of flexibility and ligand binding suggests a mechanism by which spectrin might participate in mechanosensory regulation.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21455271 N.M.Burton, and L.J.Bruce (2011).
Modelling the structure of the red cell membrane.
  Biochem Cell Biol, 89, 200-215.  
20352359 A.Chorzalska, A.Lach, T.Borowik, M.Wolny, A.Hryniewicz-Jankowska, A.Kolondra, M.Langner, and A.F.Sikorski (2010).
The effect of the lipid-binding site of the ankyrin-binding domain of erythroid beta-spectrin on the properties of natural membranes and skeletal structures.
  Cell Mol Biol Lett, 15, 406-423.  
20411297 A.Czogalla, and A.F.Sikorski (2010).
Do we already know how spectrin attracts ankyrin?
  Cell Mol Life Sci, 67, 2679-2683.  
20668894 A.J.Baines (2010).
The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life.
  Protoplasma, 244, 99.  
20164196 C.W.Cairo, R.Das, A.Albohy, Q.J.Baca, D.Pradhan, J.S.Morrow, D.Coombs, and D.E.Golan (2010).
Dynamic regulation of CD45 lateral mobility by the spectrin-ankyrin cytoskeleton of T cells.
  J Biol Chem, 285, 11392-11401.  
20573981 G.H.Mazock, A.Das, C.Base, and R.R.Dubreuil (2010).
Transgene rescue identifies an essential function for Drosophila beta spectrin in the nervous system and a selective requirement for ankyrin-2-binding activity.
  Mol Biol Cell, 21, 2860-2868.  
20101027 J.J.Ipsaro, and A.Mondragón (2010).
Structural basis for spectrin recognition by ankyrin.
  Blood, 115, 4093-4101.
PDB codes: 3kbt 3kbu
20197550 J.J.Ipsaro, S.L.Harper, T.E.Messick, R.Marmorstein, A.Mondragón, and D.W.Speicher (2010).
Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex.
  Blood, 115, 4843-4852.
PDB code: 3lbx
20079712 P.J.La-Borde, P.R.Stabach, I.Simonović, J.S.Morrow, and M.Simonović (2010).
Ankyrin recognizes both surface character and shape of the 14-15 di-repeat of beta-spectrin.
  Biochem Biophys Res Commun, 392, 490-494.  
20003297 G.Naamati, M.Fromer, and M.Linial (2009).
Expansion of tandem repeats in sea anemone Nematostella vectensis proteome: A source for gene novelty?
  BMC Genomics, 10, 593.  
19478050 P.S.Low (2009).
Where spectrin snuggles with ankyrin.
  Blood, 113, 5372-5373.  
  20457566 V.Bennett, and J.Healy (2009).
Membrane domains based on ankyrin and spectrin associated with cell-cell interactions.
  Cold Spring Harb Perspect Biol, 1, a003012.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer