spacer
spacer

PDBsum entry 3d9z

Go to PDB code: 
Top Page protein ligands metals links
Lyase PDB id
3d9z
Jmol
Contents
Protein chain
257 a.a.
Ligands
D9Z
Metals
_ZN

References listed in PDB file
Key reference
Title Design of a carbonic anhydrase IX active-Site mimic to screen inhibitors for possible anticancer properties.
Authors C.Genis, K.H.Sippel, N.Case, W.Cao, B.S.Avvaru, L.J.Tartaglia, L.Govindasamy, C.Tu, M.Agbandje-Mckenna, D.N.Silverman, C.J.Rosser, R.Mckenna.
Ref. Biochemistry, 2009, 48, 1322-1331.
PubMed id 19170619
Abstract
Recently, a convincing body of evidence has accumulated suggesting that the overexpression of carbonic anhydrase isozyme IX (CA IX) in some cancers contributes to the acidification of the extracellular matrix, which in turn promotes the growth and metastasis of the tumor. These observations have made CA IX an attractive drug target for the selective treatment of certain cancers. Currently, there is no available X-ray crystal structure of CA IX, and this lack of availability has hampered the rational design of selective CA IX inhibitors. In light of these observations and on the basis of structural alignment homology, using the crystal structure of carbonic anhydrase II (CA II) and the sequence of CA IX, a double mutant of CA II with Ala65 replaced by Ser and Asn67 replaced by Gln has been constructed to resemble the active site of CA IX. This CA IX mimic has been characterized kinetically using (18)O-exchange and structurally using X-ray crystallography, alone and in complex with five CA sulfonamide-based inhibitors (acetazolamide, benzolamide, chlorzolamide, ethoxzolamide, and methazolamide), and compared to CA II. This structural information has been evaluated by both inhibition studies and in vitro cytotoxicity assays and shows a correlated structure-activity relationship. Kinetic and structural studies of CA II and CA IX mimic reveal chlorzolamide to be a more potent inhibitor of CA IX, inducing an active-site conformational change upon binding. Additionally, chlorzolamide appears to be cytotoxic to prostate cancer cells. This preliminary study demonstrates that the CA IX mimic may provide a useful model to design more isozyme-specific CA IX inhibitors, which may lead to development of new therapeutic treatments of some cancers.
PROCHECK
Go to PROCHECK summary
 Headers