spacer
spacer

PDBsum entry 3d31

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transport protein PDB id
3d31

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
348 a.a. *
248 a.a. *
Ligands
WO4 ×2
* Residue conservation analysis
PDB id:
3d31
Name: Transport protein
Title: Modbc from methanosarcina acetivorans
Structure: Sulfate/molybdate abc transporter, atp-binding protein. Chain: a, b. Engineered: yes. Sulfate/molybdate abc transporter, permease protein. Chain: c, d. Engineered: yes
Source: Methanosarcina acetivorans. Strain: c2a. Expressed in: escherichia coli. Expressed in: escherichia coli
Resolution:
3.00Å     R-factor:   0.251     R-free:   0.282
Authors: S.Gerber,M.Comellas-Bigler,K.P.Locher
Key ref:
S.Gerber et al. (2008). Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science, 321, 246-250. PubMed id: 18511655 DOI: 10.1126/science.1156213
Date:
09-May-08     Release date:   10-Jun-08    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q8TTZ3  (Q8TTZ3_METAC) -  Sulfate/molybdate ABC transporter, ATP-binding protein from Methanosarcina acetivorans (strain ATCC 35395 / DSM 2834 / JCM 12185 / C2A)
Seq:
Struc:
348 a.a.
348 a.a.
Protein chains
Pfam   ArchSchema ?
Q8TTZ4  (Q8TTZ4_METAC) -  Sulfate/molybdate ABC transporter, permease protein from Methanosarcina acetivorans (strain ATCC 35395 / DSM 2834 / JCM 12185 / C2A)
Seq:
Struc:
272 a.a.
248 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1126/science.1156213 Science 321:246-250 (2008)
PubMed id: 18511655  
 
 
Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter.
S.Gerber, M.Comellas-Bigler, B.A.Goetz, K.P.Locher.
 
  ABSTRACT  
 
Transport across cellular membranes is an essential process that is catalyzed by diverse membrane transport proteins. The turnover rates of certain transporters are inhibited by their substrates in a process termed trans-inhibition, whose structural basis is poorly understood. We present the crystal structure of a molybdate/tungstate ABC transporter (ModBC) from Methanosarcina acetivorans in a trans-inhibited state. The regulatory domains of the nucleotide-binding subunits are in close contact and provide two oxyanion binding pockets at the shared interface. By specifically binding to these pockets, molybdate or tungstate prevent adenosine triphosphatase activity and lock the transporter in an inward-facing conformation, with the catalytic motifs of the nucleotide-binding domains separated. This allosteric effect prevents the transporter from switching between the inward-facing and the outward-facing states, thus interfering with the alternating access and release mechanism.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. ATPase activity and crystal structure of M. acetivorans ModBC. (A) Relative ATP hydrolysis rates of MaModBC in the presence of the oxyanions molybdate (open circles), tungstate (solid diamonds), and sulfate (solid squares). Only molybdate and tungstate are substrates of MaModBC. (B) Side view of MaModBC in ribbon representation illustrating the arrangement of the protein subunits. The gray box represents the approximate position of the lipid membrane.
Figure 4.
Fig. 4. TMD conformations as observed in the crystal structures of MaModBC, AfModBC, and MalFGK. (A) Comparison of the TMDs MaModB, AfModB, and MalFG. The key TM helices 4 and the coupling helices of each transporter are colored yellow and blue, respectively. The C atoms of residues MalG 183 and MalF 394 and the equivalent residues in MaModB (165) and AfModB (153) are depicted as red spheres, with the distances indicated. For clarity, only the cores of the TMDs are shown for MalFG, and the NBDs have been removed. (B) Chemical cross-linking of engineered cysteine residues at position 153 in AfModB. Cross-linking was performed by CuCl[2] in detergent solution, with or without ATP and o-vanadate (VO[4]). No Cu was added to the control reaction. Protein markers are shown in the left lane, with molecular masses indicated.
 
  The above figures are reprinted by permission from the AAAs: Science (2008, 321, 246-250) copyright 2008.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20922370 A.Choutko, A.Glättli, C.Fernández, C.Hilty, K.Wüthrich, and W.F.van Gunsteren (2011).
Membrane protein dynamics in different environments: simulation study of the outer membrane protein X in a lipid bilayer and in a micelle.
  Eur Biophys J, 40, 39-58.  
  21488101 A.S.Oliveira, A.M.Baptista, and C.M.Soares (2011).
Conformational changes induced by ATP-hydrolysis in an ABC transporter: A molecular dynamics study of the Sav1866 exporter.
  Proteins, 79, 1977-1990.  
21706007 G.B.Erkens, R.P.Berntsson, F.Fulyani, M.Majsnerowska, A.Vujičić-Žagar, J.Ter Beek, B.Poolman, and D.J.Slotboom (2011).
The structural basis of modularity in ECF-type ABC transporters.
  Nat Struct Mol Biol, 18, 755-760.
PDB code: 3rlb
21478852 R.M.Bill, P.J.Henderson, S.Iwata, E.R.Kunji, H.Michel, R.Neutze, S.Newstead, B.Poolman, C.G.Tate, and H.Vogel (2011).
Overcoming barriers to membrane protein structure determination.
  Nat Biotechnol, 29, 335-340.  
21194365 R.P.Gupta, P.Kueppers, L.Schmitt, and R.Ernst (2011).
The multidrug transporter Pdr5: a molecular diode?
  Biol Chem, 392, 53-60.  
20497229 T.Eitinger, D.A.Rodionov, M.Grote, and E.Schneider (2011).
Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions.
  FEMS Microbiol Rev, 35, 3.  
20562313 A.M.Sevcenco, L.E.Bevers, M.W.Pinkse, G.C.Krijger, H.T.Wolterbeek, P.D.Verhaert, W.R.Hagen, and P.L.Hagedoorn (2010).
Molybdenum incorporation in tungsten aldehyde oxidoreductase enzymes from Pyrococcus furiosus.
  J Bacteriol, 192, 4143-4152.  
20659291 E.Bordignon, M.Grote, and E.Schneider (2010).
The maltose ATP-binding cassette transporter in the 21st century--towards a structural dynamic perspective on its mode of action.
  Mol Microbiol, 77, 1354-1366.  
19940001 J.A.Lundbaek, S.A.Collingwood, H.I.Ingólfsson, R.Kapoor, and O.S.Andersen (2010).
Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes.
  J R Soc Interface, 7, 373-395.  
20454456 J.C.Wolters, R.P.Berntsson, N.Gul, A.Karasawa, A.M.Thunnissen, D.J.Slotboom, and B.Poolman (2010).
Ligand binding and crystal structures of the substrate-binding domain of the ABC transporter OpuA.
  PLoS One, 5, e10361.
PDB codes: 3l6g 3l6h
19996093 J.W.Weng, K.N.Fan, and W.N.Wang (2010).
The conformational transition pathway of ATP binding cassette transporter MsbA revealed by atomistic simulations.
  J Biol Chem, 285, 3053-3063.  
20667175 K.R.Vinothkumar, and R.Henderson (2010).
Structures of membrane proteins.
  Q Rev Biophys, 43, 65.  
19927121 V.Kanelis, R.P.Hudson, P.H.Thibodeau, P.J.Thomas, and J.D.Forman-Kay (2010).
NMR evidence for differential phosphorylation-dependent interactions in WT and DeltaF508 CFTR.
  EMBO J, 29, 263-277.  
20133716 W.Wang, J.Wu, K.Bernard, G.Li, G.Wang, M.O.Bevensee, and K.L.Kirk (2010).
ATP-independent CFTR channel gating and allosteric modulation by phosphorylation.
  Proc Natl Acad Sci U S A, 107, 3888-3893.  
  20711710 Y.Tsybovsky, R.S.Molday, and K.Palczewski (2010).
The ATP-binding cassette transporter ABCA4: structural and functional properties and role in retinal disease.
  Adv Exp Med Biol, 703, 105-125.  
19642870 C.Oswald, S.H.Smits, M.Höing, E.Bremer, and L.Schmitt (2009).
Structural analysis of the choline-binding protein ChoX in a semi-closed and ligand-free conformation.
  Biol Chem, 390, 1163-1170.
PDB code: 3hcq
19426129 C.Schölz, and R.Tampé (2009).
The peptide-loading complex--antigen translocation and MHC class I loading.
  Biol Chem, 390, 783-794.  
19234479 D.C.Rees, E.Johnson, and O.Lewinson (2009).
ABC transporters: the power to change.
  Nat Rev Mol Cell Biol, 10, 218-227.  
19250913 D.Khare, M.L.Oldham, C.Orelle, A.L.Davidson, and J.Chen (2009).
Alternating access in maltose transporter mediated by rigid-body rotations.
  Mol Cell, 33, 528-536.
PDB code: 3fh6
19053133 D.Parcej, and R.Tampé (2009).
Solute-binding sites in ABC transporters for recognition, occlusion and trans-inhibition.
  ChemMedChem, 4, 25-28.  
19261456 E.Procko, and R.Gaudet (2009).
Antigen processing and presentation: TAPping into ABC transporters.
  Curr Opin Immunol, 21, 84-91.  
19418088 G.K.Wang, J.Calderon, S.J.Jaw, and S.Y.Wang (2009).
State-dependent block of Na+ channels by articaine via the local anesthetic receptor.
  J Membr Biol, 229, 1-9.  
19798434 J.Jeon, J.S.Yang, and S.Kim (2009).
Integration of evolutionary features for the identification of functionally important residues in major facilitator superfamily transporters.
  PLoS Comput Biol, 5, e1000522.  
19159494 J.P.Becker, G.Depret, F.Van Bambeke, P.M.Tulkens, and M.Prévost (2009).
Molecular models of human P-glycoprotein in two different catalytic states.
  BMC Struct Biol, 9, 3.  
19502397 J.Wiethaus, A.Müller, M.Neumann, S.Neumann, S.Leimkühler, F.Narberhaus, and B.Masepohl (2009).
Specific interactions between four molybdenum-binding proteins contribute to Mo-dependent gene regulation in Rhodobacter capsulatus.
  J Bacteriol, 191, 5205-5215.  
19748784 P.M.Jones, M.L.O'Mara, and A.M.George (2009).
ABC transporters: a riddle wrapped in a mystery inside an enigma.
  Trends Biochem Sci, 34, 520-531.  
19715704 P.Zou, and H.S.McHaourab (2009).
Alternating access of the putative substrate-binding chamber in the ABC transporter MsbA.
  J Mol Biol, 393, 574-585.  
19748342 S.Newstead, P.W.Fowler, P.Bilton, E.P.Carpenter, P.J.Sadler, D.J.Campopiano, M.S.Sansom, and S.Iwata (2009).
Insights into how nucleotide-binding domains power ABC transport.
  Structure, 17, 1213-1222.
PDB code: 3fvq
19544044 V.Kos, and R.C.Ford (2009).
The ATP-binding cassette family: a structural perspective.
  Cell Mol Life Sci, 66, 3111-3126.  
19788177 Z.Ma, F.E.Jacobsen, and D.P.Giedroc (2009).
Coordination chemistry of bacterial metal transport and sensing.
  Chem Rev, 109, 4644-4681.  
18948194 M.L.Oldham, A.L.Davidson, and J.Chen (2008).
Structural insights into ABC transporter mechanism.
  Curr Opin Struct Biol, 18, 726-733.  
18621668 N.S.Kadaba, J.T.Kaiser, E.Johnson, A.Lee, and D.C.Rees (2008).
The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation.
  Science, 321, 250-253.
PDB codes: 3dhw 3dhx
18790847 P.C.Wen, and E.Tajkhorshid (2008).
Dimer opening of the nucleotide binding domains of ABC transporters after ATP hydrolysis.
  Biophys J, 95, 5100-5110.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer