spacer
spacer

PDBsum entry 2zvn

Go to PDB code: 
protein Protein-protein interface(s) links
Signaling protein/transcription PDB id
2zvn

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
148 a.a. *
85 a.a. *
Waters ×65
* Residue conservation analysis
PDB id:
2zvn
Name: Signaling protein/transcription
Title: Nemo cozi domain incomplex with diubiquitin in p212121 space group
Structure: Ubc protein. Chain: a, g, c, e. Fragment: ubiquitin. Engineered: yes. Nf-kappa-b essential modulator. Chain: b, d, f, h. Fragment: cc2-lz, cozi domain. Synonym: nemo, nf-kappa-b essential modifier, inhibitor of nuclear factor kappa-b kinase subunit gamma, ikb kinase subunit gamma, i-
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562. Mus musculus. Mouse. Organism_taxid: 10090.
Resolution:
3.00Å     R-factor:   0.263     R-free:   0.303
Authors: S.Rahighi,F.Ikeda,M.Kawasaki,M.Akutsu,N.Suzuki,R.Kato,T.Kensche, T.Uejima,S.Bloor,D.Komander,F.Randow,S.Wakatsuki,I.Dikic
Key ref:
S.Rahighi et al. (2009). Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell, 136, 1098-1109. PubMed id: 19303852 DOI: 10.1016/j.cell.2009.03.007
Date:
12-Nov-08     Release date:   24-Mar-09    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0CG48  (UBC_HUMAN) -  Polyubiquitin-C from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
685 a.a.
148 a.a.
Protein chains
Pfam   ArchSchema ?
O88522  (NEMO_MOUSE) -  NF-kappa-B essential modulator from Mus musculus
Seq:
Struc:
412 a.a.
85 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: Chains A, G, B, D, C, E, F, H: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/j.cell.2009.03.007 Cell 136:1098-1109 (2009)
PubMed id: 19303852  
 
 
Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation.
S.Rahighi, F.Ikeda, M.Kawasaki, M.Akutsu, N.Suzuki, R.Kato, T.Kensche, T.Uejima, S.Bloor, D.Komander, F.Randow, S.Wakatsuki, I.Dikic.
 
  ABSTRACT  
 
Activation of nuclear factor-kappaB (NF-kappaB), a key mediator of inducible transcription in immunity, requires binding of NF-kappaB essential modulator (NEMO) to ubiquitinated substrates. Here, we report that the UBAN (ubiquitin binding in ABIN and NEMO) motif of NEMO selectively binds linear (head-to-tail) ubiquitin chains. Crystal structures of the UBAN motif revealed a parallel coiled-coil dimer that formed a heterotetrameric complex with two linear diubiquitin molecules. The UBAN dimer contacted all four ubiquitin moieties, and the integrity of each binding site was required for efficient NF-kappaB activation. Binding occurred via a surface on the proximal ubiquitin moiety and the canonical Ile44 surface on the distal one, thereby providing specificity for linear chain recognition. Residues of NEMO involved in binding linear ubiquitin chains are required for NF-kappaB activation by TNF-alpha and other agonists, providing an explanation for the detrimental effect of NEMO mutations in patients suffering from X-linked ectodermal dysplasia and immunodeficiency.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Structure of NEMO[CoZi] in Complex with Diubiquitin
(A and B) Overall structure of the NEMO[CoZi]●diubiquitin complex in two orthogonal views. The two chains of NEMO are colored in green and violet; Ub[distal] is shown in orange, and Ub[proximal] in gold.
(C and D) Open-book representation of NEMO UBAN motif recognition of distal and proximal ubiquitin moities. In (C), residues from Ub[distal] (orange) and Ub[proximal] (gold) that interact with the NEMO UBAN motif are labeled on the diubiquitin surface, indicating two mutually exclusive binding surfaces. (D) shows a surface representation of NEMO UBAN motif colored according to the interaction partner, Ub[distal] (orange) and Ub[proximal] (gold) and both (yellow). Residues involved in the interaction are labeled.
(E and F) Open-book representations of the NEMO[CoZi]●diubiquitin complex. The surfaces of linear diubiquitin (E) and NEMO[CoZi] (F) are colored according to their electrostatic surface potential (blue, positive; red, negative). In (F), the bound diubiquitin is drawn as a transparent ribbon model; Ub[distal] in orange and Ub[proximal] in gold.
(G and I) Stereo views of the interactions of the Ub[distal] (G) and Ub[proximal] (I) with the NEMO UBAN motif colored as in (A). Interacting residues are shown as sticks. Hydrogen bonds and salt bridges are indicated as blue dashed lines.
(H and J) Schematic diagrams of the interactions of Ub[distal] (H) and Ub[proximal] (J) with the NEMO UBAN motif. The two chains of NEMO are shown in green and violet, and Ub[distal] and Ub[proximal] in orange and gold, respectively. Dashed orange and yellow lines indicate hydrogen bonds and salt bridges, respectively. Hydrophobic interactions are shown as dashed red lines. Residues in the NEMO UBAN domain whose mutations are found in ectodermal dysplasia (D304, E308, and R312) are circled in red.
Figure 7.
Figure 7. A Model of Ectodermal Dysplasia Mutations in NEMO
Mutations in NEMO UBAN domain found in ectodermal dysplasia (D304, E308, and R312) (red) are all involved in binding to linear diubiquitin at amino acids R72, L73, and R74 in distal ubiquitin molecule (orange) or Q2, F4, and E64 in proximal ubiquitin molecule (gold).
 
  The above figures are reprinted by permission from Cell Press: Cell (2009, 136, 1098-1109) copyright 2009.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
23124073 P.Vandenabeele, and M.J.Bertrand (2012).
The role of the IAP E3 ubiquitin ligases in regulating pattern-recognition receptor signalling.
  Nat Rev Immunol, 12, 833-844.  
22820888 Y.Kulathu, and D.Komander (2012).
Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages.
  Nat Rev Mol Cell Biol, 13, 508-523.  
23201676 Y.Ye, G.Blaser, M.H.Horrocks, M.J.Ruedas-Rama, S.Ibrahim, A.A.Zhukov, A.Orte, D.Klenerman, S.E.Jackson, and D.Komander (2012).
Ubiquitin chain conformation regulates recognition and activity of interacting proteins.
  Nature, 492, 266-270.  
21857666 A.Plechanovová, E.G.Jaffray, S.A.McMahon, K.A.Johnson, I.Navrátilová, J.H.Naismith, and R.T.Hay (2011).
Mechanism of ubiquitylation by dimeric RING ligase RNF4.
  Nat Struct Mol Biol, 18, 1052-1059.
PDB code: 2xeu
21455173 B.Gerlach, S.M.Cordier, A.C.Schmukle, C.H.Emmerich, E.Rieser, T.L.Haas, A.I.Webb, J.A.Rickard, H.Anderton, W.W.Wong, U.Nachbur, L.Gangoda, U.Warnken, A.W.Purcell, J.Silke, and H.Walczak (2011).
Linear ubiquitination prevents inflammation and regulates immune signalling.
  Nature, 471, 591-596.  
21540891 C.Behrends, and J.W.Harper (2011).
Constructing and decoding unconventional ubiquitin chains.
  Nat Struct Mol Biol, 18, 520-528.  
21448225 C.Grabbe, K.Husnjak, and I.Dikic (2011).
The spatial and temporal organization of ubiquitin networks.
  Nat Rev Mol Cell Biol, 12, 295-307.  
21455181 F.Ikeda, Y.L.Deribe, S.S.Skånland, B.Stieglitz, C.Grabbe, M.Franz-Wachtel, S.J.van Wijk, P.Goswami, V.Nagy, J.Terzic, F.Tokunaga, A.Androulidaki, T.Nakagawa, M.Pasparakis, K.Iwai, J.P.Sundberg, L.Schaefer, K.Rittinger, B.Macek, and I.Dikic (2011).
SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis.
  Nature, 471, 637-641.  
21212807 F.Renner, V.V.Saul, A.Pagenstecher, T.Wittwer, and M.L.Schmitz (2011).
Inducible SUMO modification of TANK alleviates its repression of TLR7 signalling.
  EMBO Rep, 12, 129-135.  
21423167 G.Xu, Y.C.Lo, Q.Li, G.Napolitano, X.Wu, X.Jiang, M.Dreano, M.Karin, and H.Wu (2011).
Crystal structure of inhibitor of κB kinase β.
  Nature, 472, 325-330.
PDB codes: 3qa8 3qad 3rzf
21138416 K.Clark, M.Peggie, L.Plater, R.J.Sorcek, E.R.Young, J.B.Madwed, J.Hough, E.G.McIver, and P.Cohen (2011).
Novel cross-talk within the IKK family controls innate immunity.
  Biochem J, 434, 93.  
21292167 K.S.Inn, M.U.Gack, F.Tokunaga, M.Shi, L.Y.Wong, K.Iwai, and J.U.Jung (2011).
Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction.
  Mol Cell, 41, 354-365.  
21151032 L.Bedford, J.Lowe, L.R.Dick, R.J.Mayer, and J.E.Brownell (2011).
Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets.
  Nat Rev Drug Discov, 10, 29-46.  
21232018 M.A.O'Donnell, and A.T.Ting (2011).
RIP1 comes back to life as a cell death regulator in TNFR1 signaling.
  FEBS J, 278, 877-887.  
21135871 S.Liu, and Z.J.Chen (2011).
Expanding role of ubiquitination in NF-κB signaling.
  Cell Res, 21, 6.  
21187855 S.Miyamoto (2011).
Nuclear initiated NF-κB signaling: NEMO and ATM take center stage.
  Cell Res, 21, 116-130.  
21460442 Z.S.Derewenda (2011).
It's all in the crystals….
  Acta Crystallogr D Biol Crystallogr, 67, 243-248.  
19498442 A.Bergmann (2010).
The role of ubiquitylation for the control of cell death in Drosophila.
  Cell Death Differ, 17, 61-67.  
20345847 A.S.Shifera (2010).
The zinc finger domain of IKKγ (NEMO) protein in health and disease.
  J Cell Mol Med, 14, 2404-2414.  
21168777 B.A.Malynn, and A.Ma (2010).
Ubiquitin makes its mark on immune regulation.
  Immunity, 33, 843-852.  
20385093 C.Zheng, V.Kabaleeswaran, Y.Wang, G.Cheng, and H.Wu (2010).
Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation.
  Mol Cell, 38, 101-113.
PDB codes: 3m06 3m0a 3m0d
20923877 D.Boehm, B.E.Gewurz, E.Kieff, and E.Cahir-McFarland (2010).
Epstein-Barr latent membrane protein 1 transformation site 2 activates NF-kappaB in the absence of NF-kappaB essential modifier residues 133-224 or 373-419.
  Proc Natl Acad Sci U S A, 107, 18103-18108.  
20152160 E.Sakata, T.Satoh, S.Yamamoto, Y.Yamaguchi, M.Yagi-Utsumi, E.Kurimoto, K.Tanaka, S.Wakatsuki, and K.Kato (2010).
Crystal structure of UbcH5b~ubiquitin intermediate: insight into the formation of the self-assembled E2~Ub conjugates.
  Structure, 18, 138-147.
PDB code: 3a33
21111228 F.Ikeda, N.Crosetto, and I.Dikic (2010).
What determines the specificity and outcomes of ubiquitin signaling?
  Cell, 143, 677-681.  
20181483 F.Liu, and K.J.Walters (2010).
Multitasking with ubiquitin through multivalent interactions.
  Trends Biochem Sci, 35, 352-360.  
20351172 F.Wu-Baer, T.Ludwig, and R.Baer (2010).
The UBXN1 protein associates with autoubiquitinated forms of the BRCA1 tumor suppressor and inhibits its enzymatic function.
  Mol Cell Biol, 30, 2787-2798.  
20671728 G.N.Maine, H.Li, I.W.Zaidi, V.Basrur, K.S.Elenitoba-Johnson, and E.Burstein (2010).
A bimolecular affinity purification method under denaturing conditions for rapid isolation of a ubiquitinated protein for mass spectrometry analysis.
  Nat Protoc, 5, 1447-1459.  
20010814 H.Ashida, M.Kim, M.Schmidt-Supprian, A.Ma, M.Ogawa, and C.Sasakawa (2010).
A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKgamma to dampen the host NF-kappaB-mediated inflammatory response.
  Nat Cell Biol, 12, 66.  
  21113390 H.Habelhah (2010).
Emerging complexity of protein ubiquitination in the NF-κB pathway.
  Genes Cancer, 1, 735-747.  
  20357899 H.Wu, Y.C.Lo, and S.C.Lin (2010).
Recent advances in polyubiquitin chain recognition.
  F1000 Biol Rep, 2, 1-5.  
21095585 I.Bosanac, I.E.Wertz, B.Pan, C.Yu, S.Kusam, C.Lam, L.Phu, Q.Phung, B.Maurer, D.Arnott, D.S.Kirkpatrick, V.M.Dixit, and S.G.Hymowitz (2010).
Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling.
  Mol Cell, 40, 548-557.
PDB codes: 3oj3 3oj4
  20300215 I.E.Wertz, and V.M.Dixit (2010).
Signaling to NF-kappaB: regulation by ubiquitination.
  Cold Spring Harb Perspect Biol, 2, a003350.  
20502939 J.Gautheron, and G.Courtois (2010).
"Without Ub I am nothing": NEMO as a multifunctional player in ubiquitin-mediated control of NF-kappaB activation.
  Cell Mol Life Sci, 67, 3101-3113.  
20541996 J.M.Winget, and T.Mayor (2010).
The diversity of ubiquitin recognition: hot spots and varied specificity.
  Mol Cell, 38, 627-635.  
21113135 J.N.Dynek, T.Goncharov, E.C.Dueber, A.V.Fedorova, A.Izrael-Tomasevic, L.Phu, E.Helgason, W.J.Fairbrother, K.Deshayes, D.S.Kirkpatrick, and D.Vucic (2010).
c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling.
  EMBO J, 29, 4198-4209.  
20651737 M.Gyrd-Hansen, and P.Meier (2010).
IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer.
  Nat Rev Cancer, 10, 561-574.  
19955178 P.Broglie, K.Matsumoto, S.Akira, D.L.Brautigan, and J.Ninomiya-Tsuji (2010).
Transforming growth factor beta-activated kinase 1 (TAK1) kinase adaptor, TAK1-binding protein 2, plays dual roles in TAK1 signaling by recruiting both an activator and an inhibitor of TAK1 kinase in tumor necrosis factor signaling pathway.
  J Biol Chem, 285, 2333-2339.  
20817427 P.D.Mace, and S.J.Riedl (2010).
Molecular cell death platforms and assemblies.
  Curr Opin Cell Biol, 22, 828-836.  
  19815658 R.Baker, and S.Ghosh (2010).
Direct activation of protein kinases by ubiquitin.
  J Mol Cell Biol, 2, 20-22.  
20680392 R.Ostuni, I.Zanoni, and F.Granucci (2010).
Deciphering the complexity of Toll-like receptor signaling.
  Cell Mol Life Sci, 67, 4109-4134.  
20385835 S.Zhao, and H.D.Ulrich (2010).
Distinct consequences of posttranslational modification by linear versus K63-linked polyubiquitin chains.
  Proc Natl Acad Sci U S A, 107, 7704-7709.  
20404851 T.Kawai, and S.Akira (2010).
The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors.
  Nat Immunol, 11, 373-384.  
20030582 V.Nagy, and I.Dikic (2010).
Ubiquitin ligase complexes: from substrate selectivity to conjugational specificity.
  Biol Chem, 391, 163-169.  
20495563 Y.L.Deribe, T.Pawson, and I.Dikic (2010).
Post-translational modifications in signal integration.
  Nat Struct Mol Biol, 17, 666-672.  
20932476 Z.H.Wu, E.T.Wong, Y.Shi, J.Niu, Z.Chen, S.Miyamoto, and V.Tergaonkar (2010).
ATM- and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress.
  Mol Cell, 40, 75-86.  
19648011 A.Chariot (2009).
The NF-kappaB-independent functions of IKK subunits in immunity and cancer.
  Trends Cell Biol, 19, 404-413.  
19858201 A.D.Jacobson, N.Y.Zhang, P.Xu, K.J.Han, S.Noone, J.Peng, and C.W.Liu (2009).
The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome.
  J Biol Chem, 284, 35485-35494.  
19373254 D.Komander, F.Reyes-Turcu, J.D.Licchesi, P.Odenwaelder, K.D.Wilkinson, and D.Barford (2009).
Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains.
  EMBO Rep, 10, 466-473.
PDB codes: 2jf5 2w9n
19626045 D.Komander, M.J.Clague, and S.Urbé (2009).
Breaking the chains: structure and function of the deubiquitinases.
  Nat Rev Mol Cell Biol, 10, 550-563.  
19436320 D.Rotin, and S.Kumar (2009).
Physiological functions of the HECT family of ubiquitin ligases.
  Nat Rev Mol Cell Biol, 10, 398-409.  
19763089 E.Laplantine, E.Fontan, J.Chiaravalli, T.Lopez, G.Lakisic, M.Véron, F.Agou, and A.Israël (2009).
NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain.
  EMBO J, 28, 2885-2895.  
19422324 F.J.Ivins, M.G.Montgomery, S.J.Smith, A.C.Morris-Davies, I.A.Taylor, and K.Rittinger (2009).
NEMO oligomerization and its ubiquitin-binding properties.
  Biochem J, 421, 243-251.  
19404332 F.Randow, and P.J.Lehner (2009).
Viral avoidance and exploitation of the ubiquitin system.
  Nat Cell Biol, 11, 527-534.  
20064473 H.B.Kamadurai, J.Souphron, D.C.Scott, D.M.Duda, D.J.Miller, D.Stringer, R.C.Piper, and B.A.Schulman (2009).
Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex.
  Mol Cell, 36, 1095-1102.
PDB codes: 3jvz 3jw0
19909372 H.Shinohara, and T.Kurosaki (2009).
Comprehending the complex connection between PKCbeta, TAK1, and IKK in BCR signaling.
  Immunol Rev, 232, 300-318.  
19391196 I.Dikic (2009).
Journal club. A new ubiquitin chain, a new signal.
  Nat Rev Mol Cell Biol, 10, 306.  
19773779 I.Dikic, S.Wakatsuki, and K.J.Walters (2009).
Ubiquitin-binding domains - from structures to functions.
  Nat Rev Mol Cell Biol, 10, 659-671.  
19956206 I.Dikic, and V.Dötsch (2009).
Ubiquitin linkages make a difference.
  Nat Struct Mol Biol, 16, 1209-1210.  
19965465 J.D.Scott, and T.Pawson (2009).
Cell Signaling in Space and Time: Where Proteins Come Together and When They're Apart.
  Science, 326, 1220-1224.  
19543231 K.Iwai, and F.Tokunaga (2009).
Linear polyubiquitination: a new regulator of NF-kappaB activation.
  EMBO Rep, 10, 706-713.  
19690555 K.J.Walters, and X.Chen (2009).
Measuring ubiquitin chain linkage: Rap80 uses a molecular ruler mechanism for ubiquitin linkage specificity.
  EMBO J, 28, 2307-2308.  
19643665 L.Vereecke, R.Beyaert, and G.van Loo (2009).
The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology.
  Trends Immunol, 30, 383-391.  
19465892 M.Rape (2009).
Ubiquitin, infinitely seductive: symposium on the many faces of ubiquitin.
  EMBO Rep, 10, 558-562.  
19854138 M.Xu, B.Skaug, W.Zeng, and Z.J.Chen (2009).
A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta.
  Mol Cell, 36, 302-314.  
19627256 S.Carpenter, and L.A.O'Neill (2009).
Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins.
  Biochem J, 422, 1.  
  20066103 T.Huxford, and G.Ghosh (2009).
A structural guide to proteins of the NF-kappaB signaling module.
  Cold Spring Harbor Perspect Biol, 1, a000075.  
19820708 T.L.Thurston, G.Ryzhakov, S.Bloor, N.von Muhlinen, and F.Randow (2009).
The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria.
  Nat Immunol, 10, 1215-1221.  
19935683 Y.Kulathu, M.Akutsu, A.Bremm, K.Hofmann, and D.Komander (2009).
Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain.
  Nat Struct Mol Biol, 16, 1328-1330.
PDB codes: 2wwz 2wx0 2wx1
19536136 Y.Sato, A.Yoshikawa, H.Mimura, M.Yamashita, A.Yamagata, and S.Fukai (2009).
Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80.
  EMBO J, 28, 2461-2468.
PDB code: 3a1q
19927120 Y.Sato, A.Yoshikawa, M.Yamashita, A.Yamagata, and S.Fukai (2009).
Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3.
  EMBO J, 28, 3903-3909.
PDB codes: 3a9j 3a9k
19851334 Y.Ye, and M.Rape (2009).
Building ubiquitin chains: E2 enzymes at work.
  Nat Rev Mol Cell Biol, 10, 755-764.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer