spacer
spacer

PDBsum entry 2zle

Go to PDB code: 
protein Protein-protein interface(s) links
Hydrolase PDB id
2zle

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
(+ 6 more) 396 a.a. *
346 a.a. *
* Residue conservation analysis
PDB id:
2zle
Name: Hydrolase
Title: Cryo-em structure of degp12/omp
Structure: Protease do. Chain: a, b, c, e, f, g, h, i, j, k, l, m. Synonym: degp. Engineered: yes. Outer membrane protein c. Chain: d. Synonym: porin ompc, outer membrane protein 1b. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Gene: degp, htra, ptd. Expressed in: escherichia coli. Expression_system_taxid: 562. Gene: ompc, meoa, par. Expression_system_taxid: 562
Authors: E.Schaefer,H.R.Saibil
Key ref:
T.Krojer et al. (2008). Structural basis for the regulated protease and chaperone function of DegP. Nature, 453, 885-890. PubMed id: 18496527 DOI: 10.1038/nature07004
Date:
09-Apr-08     Release date:   03-Jun-08    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0C0V0  (DEGP_ECOLI) -  Periplasmic serine endoprotease DegP from Escherichia coli (strain K12)
Seq:
Struc:
474 a.a.
396 a.a.
Protein chain
Pfam   ArchSchema ?
P06996  (OMPC_ECOLI) -  Outer membrane porin C from Escherichia coli (strain K12)
Seq:
Struc:
367 a.a.
346 a.a.
Key:    PfamA domain  Secondary structure

 Enzyme reactions 
   Enzyme class 1: Chains A, B, C, E, F, G, H, I, J, K, L, M: E.C.3.4.21.107  - peptidase Do.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: Chain D: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.

 

 
DOI no: 10.1038/nature07004 Nature 453:885-890 (2008)
PubMed id: 18496527  
 
 
Structural basis for the regulated protease and chaperone function of DegP.
T.Krojer, J.Sawa, E.Schäfer, H.R.Saibil, M.Ehrmann, T.Clausen.
 
  ABSTRACT  
 
All organisms have to monitor the folding state of cellular proteins precisely. The heat-shock protein DegP is a protein quality control factor in the bacterial envelope that is involved in eliminating misfolded proteins and in the biogenesis of outer-membrane proteins. Here we describe the molecular mechanisms underlying the regulated protease and chaperone function of DegP from Escherichia coli. We show that binding of misfolded proteins transforms hexameric DegP into large, catalytically active 12-meric and 24-meric multimers. A structural analysis of these particles revealed that DegP represents a protein packaging device whose central compartment is adaptable to the size and concentration of substrate. Moreover, the inner cavity serves antagonistic functions. Whereas the encapsulation of folded protomers of outer-membrane proteins is protective and might allow safe transit through the periplasm, misfolded proteins are eliminated in the molecular reaction chamber. Oligomer reassembly and concomitant activation on substrate binding may also be critical in regulating other HtrA proteases implicated in protein-folding diseases.
 
  Selected figure(s)  
 
Figure 2.
Figure 2: Regulation of protease activity by oligomer reassembly. a, Ribbon plot of the protease domain of DegP[6] (1kj9) and DegP[24], highlighting the mechanistically important loops LA*, LD, L1, L2 and L3. Residues of the catalytic triad (Asp 105, His 135 and Ala 210) are shown in stick mode and the loop nomenclature used^12, ^41 is indicated. b, Electron density of the active-site loops L1 and LD. The 2F[o] - F[c] simulated annealing omit map was calculated at 3.0 Šresolution (contoured at 1.1 ) after omitting loops L1 and LD from the refined model. The oxyanion hole (blue sphere) and the main-chain carbonyl group of Arg 207 are highlighted. The position of the latter oxygen is a distinctive feature of proteolytically active HtrA proteases. c, Denatured lysozyme and DegP[6] were incubated in different ratios and the resulting complexes were analysed by SEC. Left: incubation of different amounts of lysozyme (orange, 30 M; red, 300 M; blue, 600 M) with DegP[6] (15 M). Right: incubation of different amounts of DegP[6] (orange, 3 M; red, 15 M; blue, 65 M) with lysozyme (170 M). d, Brief incubation of wild-type DegP with casein (1 min, magenta line) resulted in the formation of the DegP[24]–casein complex (the pronounced low-molecular-mass peak represents unprocessed casein). After completion of degradation (30 min, green line), DegP recycled into its hexameric state. Composites of individual elution peaks are indicated on the SDS gel; the self-cleavage products of DegP are labelled DegP*.
Figure 5.
Figure 5: Cryo-electron microscopy structure of the DegP[12]–OMP complex. a, The asymmetric DegP[12]–OMP complex viewed along the approximate three-fold (top) and two-fold (bottom) axes. In the left panels the ribbon model of the DegP dodecamer is overlaid with the semi-transparent three-dimensional map. b, Central section of the DegP[12]–OMP electron microscopy map with an OmpC monomer (blue) modelled in the central density. The adjacent PDZ1 domains from neighbouring trimers are coloured in cyan and magenta. Three catalytic triads are coloured in red, green and blue and are shown magnified in the lower panel. Scale bar, 100 Å.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2008, 453, 885-890) copyright 2008.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22337167 D.L.Leyton, A.E.Rossiter, and I.R.Henderson (2012).
From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis.
  Nat Rev Microbiol, 10, 213-225.  
22245966 H.Malet, F.Canellas, J.Sawa, J.Yan, K.Thalassinos, M.Ehrmann, T.Clausen, and H.R.Saibil (2012).
Newly folded substrates inside the molecular cage of the HtrA chaperone DegQ.
  Nat Struct Mol Biol, 19, 152-157.
PDB codes: 4a8a 4a8b 4a8c 4a8d 4a9g
20969605 A.Vendeville, D.Larivière, and E.Fourmentin (2011).
An inventory of the bacterial macromolecular components and their spatial organization.
  FEMS Microbiol Rev, 35, 395-414.  
21280123 C.S.Gandhi, T.A.Walton, and D.C.Rees (2011).
OCAM: a new tool for studying the oligomeric diversity of MscL channels.
  Protein Sci, 20, 313-326.  
21247409 H.Schuhmann, U.Mogg, and I.Adamska (2011).
A new principle of oligomerization of plant DEG7 protease based on interactions of degenerated protease domains.
  Biochem J, 435, 167-174.  
21532594 J.Kley, B.Schmidt, B.Boyanov, P.C.Stolt-Bergner, R.Kirk, M.Ehrmann, R.R.Knopf, L.Naveh, Z.Adam, and T.Clausen (2011).
Structural adaptation of the plant protease Deg1 to repair photosystem II during light exposure.
  Nat Struct Mol Biol, 18, 728-731.
PDB code: 3qo6
21297635 L.Truebestein, A.Tennstaedt, T.Mönig, T.Krojer, F.Canellas, M.Kaiser, T.Clausen, and M.Ehrmann (2011).
Substrate-induced remodeling of the active site regulates human HTRA1 activity.
  Nat Struct Mol Biol, 18, 386-388.
PDB codes: 3num 3nwu 3nzi
21332448 P.F.Huesgen, H.Miranda, X.Lam, M.Perthold, H.Schuhmann, I.Adamska, and C.Funk (2011).
Recombinant Deg/HtrA proteases from Synechocystis sp. PCC 6803 differ in substrate specificity, biochemical characteristics and mechanism.
  Biochem J, 435, 733-742.  
21458668 S.Kim, R.A.Grant, and R.T.Sauer (2011).
Covalent linkage of distinct substrate degrons controls assembly and disassembly of DegP proteolytic cages.
  Cell, 145, 67-78.
PDB codes: 3otp 3ou0
21326199 T.Clausen, M.Kaiser, R.Huber, and M.Ehrmann (2011).
HTRA proteases: regulated proteolysis in protein quality control.
  Nat Rev Mol Cell Biol, 12, 152-162.  
21439479 T.Geppert, B.Hoy, S.Wessler, and G.Schneider (2011).
Context-based identification of protein-protein interfaces and "hot-spot" residues.
  Chem Biol, 18, 344-353.  
20814423 B.Hoy, M.Löwer, C.Weydig, G.Carra, N.Tegtmeyer, T.Geppert, P.Schröder, N.Sewald, S.Backert, G.Schneider, and S.Wessler (2010).
Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion.
  EMBO Rep, 11, 798-804.  
20616105 J.Tommassen (2010).
Assembly of outer-membrane proteins in bacteria and mitochondria.
  Microbiology, 156, 2587-2596.  
20965420 K.Richter, M.Haslbeck, and J.Buchner (2010).
The heat shock response: life on the verge of death.
  Mol Cell, 40, 253-266.  
20581826 M.Merdanovic, N.Mamant, M.Meltzer, S.Poepsel, A.Auckenthaler, R.Melgaard, P.Hauske, L.Nagel-Steger, A.R.Clarke, M.Kaiser, R.Huber, and M.Ehrmann (2010).
Determinants of structural and functional plasticity of a widely conserved protease chaperone complex.
  Nat Struct Mol Biol, 17, 837-843.  
20150955 S.Zeng, H.Liu, and Q.Yang (2010).
Application of symmetry adapted function method for three-dimensional reconstruction of octahedral biological macromolecules.
  Int J Biomed Imaging, 2010, 195274.  
  20452953 T.J.Silhavy, D.Kahne, and S.Walker (2010).
The bacterial cell envelope.
  Cold Spring Harb Perspect Biol, 2, a000414.  
20581825 T.Krojer, J.Sawa, R.Huber, and T.Clausen (2010).
HtrA proteases have a conserved activation mechanism that can be triggered by distinct molecular cues.
  Nat Struct Mol Biol, 17, 844-852.
PDB codes: 3mh4 3mh5 3mh6 3mh7
20088900 X.Sun, M.Ouyang, J.Guo, J.Ma, C.Lu, Z.Adam, and L.Zhang (2010).
The thylakoid protease Deg1 is involved in photosystem-II assembly in Arabidopsis thaliana.
  Plant J, 62, 240-249.  
20089771 X.Sun, T.Fu, N.Chen, J.Guo, J.Ma, M.Zou, C.Lu, and L.Zhang (2010).
The stromal chloroplast Deg7 protease participates in the repair of photosystem II after photoinhibition in Arabidopsis.
  Plant Physiol, 152, 1263-1273.  
20920237 Y.Matern, B.Barion, and S.Behrens-Kneip (2010).
PpiD is a player in the network of periplasmic chaperones in Escherichia coli.
  BMC Microbiol, 10, 251.  
19103920 A.Jomaa, J.Iwanczyk, J.Tran, and J.Ortega (2009).
Characterization of the autocleavage process of the Escherichia coli HtrA protein: implications for its physiological role.
  J Bacteriol, 191, 1924-1932.  
19554260 B.Klinkert, and F.Narberhaus (2009).
Microbial thermosensors.
  Cell Mol Life Sci, 66, 2661-2676.  
19298369 B.O.Cezairliyan, and R.T.Sauer (2009).
Control of Pseudomonas aeruginosa AlgW protease cleavage of MucA by peptide signals and MucB.
  Mol Microbiol, 72, 368-379.  
19703106 C.Baud, H.Hodak, E.Willery, H.Drobecq, C.Locht, M.Jamin, and F.Jacob-Dubuisson (2009).
Role of DegP for two-partner secretion in Bordetella.
  Mol Microbiol, 74, 315-329.  
19246758 C.Lewis, H.Skovierova, G.Rowley, B.Rezuchova, D.Homerova, A.Stevenson, J.Spencer, J.Farn, J.Kormanec, and M.Roberts (2009).
Salmonella enterica Serovar Typhimurium HtrA: regulation of expression and role of the chaperone and protease activities during infection.
  Microbiology, 155, 873-881.  
19399587 D.M.Walther, D.Rapaport, and J.Tommassen (2009).
Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence.
  Cell Mol Life Sci, 66, 2789-2804.  
19558323 F.Jacob-Dubuisson, V.Villeret, B.Clantin, A.S.Delattre, and N.Saint (2009).
First structural insights into the TpsB/Omp85 superfamily.
  Biol Chem, 390, 675-684.  
19734313 F.Ruiz-Perez, I.R.Henderson, D.L.Leyton, A.E.Rossiter, Y.Zhang, and J.P.Nataro (2009).
Roles of periplasmic chaperone proteins in the biogenesis of serine protease autotransporters of Enterobacteriaceae.
  J Bacteriol, 191, 6571-6583.  
19525348 G.Bodelón, E.Marín, and L.A.Fernández (2009).
Role of periplasmic chaperones and BamA (YaeT/Omp85) in folding and secretion of intimin from enteropathogenic Escherichia coli strains.
  J Bacteriol, 191, 5169-5179.  
19054114 J.J.Díaz-Mejía, M.Babu, and A.Emili (2009).
Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome.
  FEMS Microbiol Rev, 33, 66-97.  
19465652 J.Ortega, J.Iwanczyk, and A.Jomaa (2009).
Escherichia coli DegP: a structure-driven functional model.
  J Bacteriol, 191, 4705-4713.  
19836340 J.Sohn, R.A.Grant, and R.T.Sauer (2009).
OMP peptides activate the DegS stress-sensor protease by a relief of inhibition mechanism.
  Structure, 17, 1411-1421.
PDB codes: 3gco 3gds 3gdu 3gdv
19383696 M.Masi, G.Duret, A.H.Delcour, and R.Misra (2009).
Folding and trimerization of signal sequence-less mature TolC in the cytoplasm of Escherichia coli.
  Microbiology, 155, 1847-1857.  
19668863 P.Hauske, N.Mamant, S.Hasenbein, S.Nickel, C.Ottmann, T.Clausen, M.Ehrmann, and M.Kaiser (2009).
Peptidic small molecule activators of the stress sensor DegS.
  Mol Biosyst, 5, 980-985.  
19255437 Q.T.Shen, X.C.Bai, L.F.Chang, Y.Wu, H.W.Wang, and S.F.Sui (2009).
Bowl-shaped oligomeric structures on membranes as DegP's new functional forms in protein quality control.
  Proc Natl Acad Sci U S A, 106, 4858-4863.  
19182809 T.J.Knowles, A.Scott-Tucker, M.Overduin, and I.R.Henderson (2009).
Membrane protein architects: the role of the BAM complex in outer membrane protein assembly.
  Nat Rev Microbiol, 7, 206-214.  
18611371 D.Huber, and B.Bukau (2008).
DegP: a Protein "Death Star".
  Structure, 16, 989-990.  
18948113 G.Meng, J.W.St Geme, and G.Waksman (2008).
Repetitive architecture of the Haemophilus influenzae Hia trimeric autotransporter.
  J Mol Biol, 384, 824-836.
PDB codes: 3emf 3emi 3emo
18697939 J.Jiang, X.Zhang, Y.Chen, Y.Wu, Z.H.Zhou, Z.Chang, and S.F.Sui (2008).
Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins.
  Proc Natl Acad Sci U S A, 105, 11939-11944.  
19047732 J.Skorko-Glonek, A.Sobiecka-Szkatula, J.Narkiewicz, and B.Lipinska (2008).
The proteolytic activity of the HtrA (DegP) protein from Escherichia coli at low temperatures.
  Microbiology, 154, 3649-3658.  
19021141 P.Hauske, C.Ottmann, M.Meltzer, M.Ehrmann, and M.Kaiser (2008).
Allosteric regulation of proteases.
  Chembiochem, 9, 2920-2928.  
18759741 X.Gatsos, A.J.Perry, K.Anwari, P.Dolezal, P.P.Wolynec, V.A.Likić, A.W.Purcell, S.K.Buchanan, and T.Lithgow (2008).
Protein secretion and outer membrane assembly in Alphaproteobacteria.
  FEMS Microbiol Rev, 32, 995.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer