spacer
spacer

PDBsum entry 2z8v

Go to PDB code: 
protein Protein-protein interface(s) links
Immune system PDB id
2z8v

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
335 a.a. *
116 a.a. *
Waters ×477
* Residue conservation analysis
PDB id:
2z8v
Name: Immune system
Title: Structure of an ignar-ama1 complex
Structure: Apical membrane antigen 1. Chain: a, b. Fragment: domain i, ii, unp residues 104-438. Engineered: yes. New antigen receptor variable domain. Chain: c, d. Engineered: yes. Mutation: yes
Source: Plasmodium falciparum. Organism_taxid: 36329. Strain: 3d7. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Orectolobus maculatus. Spotted wobbegong. Organism_taxid: 168098. Expressed in: escherichia coli.
Resolution:
2.35Å     R-factor:   0.210     R-free:   0.285
Authors: V.A.Streltsov,K.A.Henderson,A.H.Batchelor,A.M.Coley,S.D.Nuttall
Key ref:
K.A.Henderson et al. (2007). Structure of an IgNAR-AMA1 complex: targeting a conserved hydrophobic cleft broadens malarial strain recognition. Structure, 15, 1452-1466. PubMed id: 17997971 DOI: 10.1016/j.str.2007.09.011
Date:
11-Sep-07     Release date:   27-Nov-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q7KQK5  (Q7KQK5_PLAF7) -  Apical membrane antigen 1 from Plasmodium falciparum (isolate 3D7)
Seq:
Struc:
 
Seq:
Struc:
622 a.a.
335 a.a.
Protein chains
Pfam   ArchSchema ?
Q6X1E6  (Q6X1E6_9CHON) -  New antigen receptor variable domain (Fragment) from Orectolobus maculatus
Seq:
Struc:
113 a.a.
116 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 

 
DOI no: 10.1016/j.str.2007.09.011 Structure 15:1452-1466 (2007)
PubMed id: 17997971  
 
 
Structure of an IgNAR-AMA1 complex: targeting a conserved hydrophobic cleft broadens malarial strain recognition.
K.A.Henderson, V.A.Streltsov, A.M.Coley, O.Dolezal, P.J.Hudson, A.H.Batchelor, A.Gupta, T.Bai, V.J.Murphy, R.F.Anders, M.Foley, S.D.Nuttall.
 
  ABSTRACT  
 
Apical membrane antigen 1 (AMA1) is essential for invasion of erythrocytes and hepatocytes by Plasmodium parasites and is a leading malarial vaccine candidate. Although conventional antibodies to AMA1 can prevent such invasion, extensive polymorphisms within surface-exposed loops may limit the ability of these AMA1-induced antibodies to protect against all parasite genotypes. Using an AMA1-specific IgNAR single-variable-domain antibody, we performed targeted mutagenesis and selection against AMA1 from three P. falciparum strains. We present cocrystal structures of two antibody-AMA1 complexes which reveal extended IgNAR CDR3 loops penetrating deep into a hydrophobic cleft on the antigen surface and contacting residues conserved across parasite species. Comparison of a series of affinity-enhancing mutations allowed dissection of their relative contributions to binding kinetics and correlation with inhibition of erythrocyte invasion. These findings provide insights into mechanisms of single-domain antibody binding, and may enable design of reagents targeting otherwise cryptic epitopes in pathogen antigens.
 
  Selected figure(s)  
 
Figure 5.
Figure 5. V[NAR]-AMA1 Contacts
(A) Alignment of AMA1s from P. falciparum strains 3D7, W2mef, and HB3 (residues N104–E438). Residues polymorphic between strains are boxed. Conserved hydrophobic cleft residues are underlined and asterisked. Residues in contact with V[NAR]s 14I-1 and 14I1-M15 (magenta), 14I-1 only (red), or 14I1-M15 only (blue) are indicated.
(B) Stereo images of the 14I-1 backbone (red) penetrating the AMA1 hydrophobic cleft (gray). Side chains of AMA1 residues within 4 Å of the V[NAR] backbone are shown, including hydrophobic residues forming the base of the hydrophobic cleft (orange) and residues polymorphic between P. falciparum strains 3D7, W2mef, and HB3 (cyan).
(C) As for (B) except for 14I1-M15 backbone (blue).
Figure 6.
Figure 6. Mechanism of V[NAR] Binding
(A) V[NAR] residue Arg92 contacts AMA1 residues Asn173, Glu174, Pro185, Thr186, and Glu187 (<4 Å) in a series of hydrogen bond and salt bridge interactions in the 14I-1 crystallographic structure. Residue coloring is as for Figure 5.
(B) As for (A) except for the V[NAR] 14I1-M15 structure.
(C) V[NAR] residues Tyr94, Tyr96, and Leu98 in the 14I-1 structure contact hydrophobic cleft residues Phe183 and Tyr251, and associated residue Asn371, through a network of water-mediated hydrogen bonds and potential aromatic interactions.
(D) V[NAR] residues Leu89 and Phe100 in the 14I-1 structure are closely associated with AMA1 residues within the hydropobic cleft (Met190, Tyr202, Met224) and residues polymorphic between P. falciparum strains (Met190, Phe201).
 
  The above figures are reprinted by permission from Cell Press: Structure (2007, 15, 1452-1466) copyright 2007.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21277861 H.González-Díaz, F.Prado-Prado, E.Sobarzo-Sánchez, M.Haddad, S.Maurel Chevalley, A.Valentin, J.Quetin-Leclercq, M.A.Dea-Ayuela, M.Teresa Gomez-Muños, C.R.Munteanu, J.José Torres-Labandeira, X.García-Mera, R.A.Tapia, and F.M.Ubeira (2011).
NL MIND-BEST: a web server for ligands and proteins discovery--theoretic-experimental study of proteins of Giardia lamblia and new compounds active against Plasmodium falciparum.
  J Theor Biol, 276, 229-249.  
21347343 M.Lamarque, S.Besteiro, J.Papoin, M.Roques, B.Vulliez-Le Normand, J.Morlon-Guyot, J.F.Dubremetz, S.Fauquenoy, S.Tomavo, B.W.Faber, C.H.Kocken, A.W.Thomas, M.J.Boulanger, G.A.Bentley, and M.Lebrun (2011).
The RON2-AMA1 Interaction is a Critical Step in Moving Junction-Dependent Invasion by Apicomplexan Parasites.
  PLoS Pathog, 7, e1001276.  
20098614 J.O.Conway, L.J.Sherwood, M.T.Collazo, J.A.Garza, and A.Hayhurst (2010).
Llama single domain antibodies specific for the 7 botulinum neurotoxin serotypes as heptaplex immunoreagents.
  PLoS One, 5, e8818.  
20518719 S.Hearty, P.J.Conroy, B.V.Ayyar, B.Byrne, and R.O'Kennedy (2010).
Surface plasmon resonance for vaccine design and efficacy studies: recent applications and future trends.
  Expert Rev Vaccines, 9, 645-664.  
21059953 S.Jähnichen, C.Blanchetot, D.Maussang, M.Gonzalez-Pajuelo, K.Y.Chow, L.Bosch, S.De Vrieze, B.Serruys, H.Ulrichts, W.Vandevelde, M.Saunders, H.J.De Haard, D.Schols, R.Leurs, P.Vanlandschoot, T.Verrips, and M.J.Smit (2010).
CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells.
  Proc Natl Acad Sci U S A, 107, 20565-20570.  
19165323 C.R.Collins, C.Withers-Martinez, F.Hackett, and M.J.Blackman (2009).
An inhibitory antibody blocks interactions between components of the malarial invasion machinery.
  PLoS Pathog, 5, e1000273.  
19529959 J.Wesolowski, V.Alzogaray, J.Reyelt, M.Unger, K.Juarez, M.Urrutia, A.Cauerhff, W.Danquah, B.Rissiek, F.Scheuplein, N.Schwarz, S.Adriouch, O.Boyer, M.Seman, A.Licea, D.V.Serreze, F.A.Goldbaum, F.Haag, and F.Koch-Nolte (2009).
Single domain antibodies: promising experimental and therapeutic tools in infection and immunity.
  Med Microbiol Immunol, 198, 157-174.  
19576999 L.Bloom, and V.Calabro (2009).
FN3: a new protein scaffold reaches the clinic.
  Drug Discov Today, 14, 949-955.  
19501012 M.Gebauer, and A.Skerra (2009).
Engineered protein scaffolds as next-generation antibody therapeutics.
  Curr Opin Chem Biol, 13, 245-255.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time.

 

spacer

spacer