spacer
spacer

PDBsum entry 2vbc

Go to PDB code: 
protein Protein-protein interface(s) links
Hydrolase PDB id
2vbc

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
600 a.a. *
15 a.a. *
Waters ×34
* Residue conservation analysis
PDB id:
2vbc
Name: Hydrolase
Title: Crystal structure of the ns3 protease-helicase from dengue virus
Structure: Dengue 4 ns3 full-length protein. Chain: a. Fragment: residues 1475-2092. Engineered: yes. Partial polyprotein for ns2a and ns2b, type 4 prototype dv4 h241. Chain: b. Fragment: residues 101-118. Engineered: yes
Source: Dengue virus type 4. Organism_taxid: 11070. Expressed in: escherichia coli. Expression_system_taxid: 511693. Expression_system_variant: codon plus.
Resolution:
3.15Å     R-factor:   0.206     R-free:   0.277
Authors: D.H.Luo,T.Xu,C.Hunke,G.Gruber,S.G.Vasudevan,J.Lescar
Key ref: D.Luo et al. (2008). Crystal structure of the NS3 protease-helicase from dengue virus. J Virol, 82, 173-183. PubMed id: 17942558
Date:
10-Sep-07     Release date:   30-Oct-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q2TN89  (Q2TN89_9FLAV) -  Genome polyprotein from dengue virus type 4
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
3387 a.a.
600 a.a.*
Protein chain
Pfam   ArchSchema ?
Q91EQ2  (Q91EQ2_9FLAV) -  Partial polyprotein for NS2a and NS2b, type 4 prototype DV4 H241 (Fragment) from dengue virus type 4
Seq:
Struc:
132 a.a.
15 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class 2: Chain A: E.C.3.4.21.91  - flavivirin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Selective hydrolysis of Xaa-Xaa-|-Xbb bonds in which each of the Xaa can be either Arg or Lys and Xbb can be either Ser or Ala.
   Enzyme class 3: Chain A: E.C.3.6.1.15  - nucleoside-triphosphate phosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a ribonucleoside 5'-triphosphate + H2O = a ribonucleoside 5'-diphosphate + phosphate + H+
ribonucleoside 5'-triphosphate
+ H2O
= ribonucleoside 5'-diphosphate
+ phosphate
+ H(+)
   Enzyme class 4: Chain A: E.C.3.6.4.13  - Rna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
J Virol 82:173-183 (2008)
PubMed id: 17942558  
 
 
Crystal structure of the NS3 protease-helicase from dengue virus.
D.Luo, T.Xu, C.Hunke, G.Grüber, S.G.Vasudevan, J.Lescar.
 
  ABSTRACT  
 
Several flaviviruses are important human pathogens, including dengue virus, a disease against which neither a vaccine nor specific antiviral therapies currently exist. During infection, the flavivirus RNA genome is translated into a polyprotein, which is cleaved into several components. Nonstructural protein 3 (NS3) carries out enzymatic reactions essential for viral replication, including proteolysis of the polyprotein through its serine protease N-terminal domain, with a segment of 40 residues from the NS2B protein acting as a cofactor. The ATPase/helicase domain is located at the C terminus of NS3. Atomic structures are available for these domains separately, but a molecular view of the full-length flavivirus NS3 polypeptide is still lacking. We report a crystallographic structure of a complete NS3 molecule fused to 18 residues of the NS2B cofactor at a resolution of 3.15 A. The relative orientation between the protease and helicase domains is drastically different than the single-chain NS3-NS4A molecule from hepatitis C virus, which was caught in the act of cis cleavage at the NS3-NS4A junction. Here, the protease domain sits beneath the ATP binding site, giving the molecule an elongated shape. The domain arrangement found in the crystal structure fits nicely into an envelope determined ab initio using small-angle X-ray scattering experiments in solution, suggesting a stable molecular conformation. We propose that a basic patch located at the surface of the protease domain increases the affinity for nucleotides and could also participate in RNA binding, explaining the higher unwinding activity of the full-length enzyme compared to that of the isolated helicase domain.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
22138959 E.Decroly, F.Ferron, J.Lescar, and B.Canard (2012).
Conventional and unconventional mechanisms for capping viral mRNA.
  Nat Rev Microbiol, 10, 51-65.  
20978807 S.A.Shiryaev, A.V.Chernov, T.N.Shiryaeva, A.E.Aleshin, and A.Y.Strongin (2011).
The acidic sequence of the NS4A cofactor regulates ATP hydrolysis by the HCV NS3 helicase.
  Arch Virol, 156, 313-318.  
21344277 T.Knehans, A.Schüller, D.N.Doan, K.Nacro, J.Hill, P.Güntert, M.S.Madhusudhan, T.Weil, and S.G.Vasudevan (2011).
Structure-guided fragment-based in silico drug design of dengue protease inhibitors.
  J Comput Aided Mol Des, 25, 263-274.  
20108979 C.A.Belon, Y.D.High, T.I.Lin, F.Pauwels, and D.N.Frick (2010).
Mechanism and specificity of a symmetrical benzimidazolephenylcarboxamide helicase inhibitor.
  Biochemistry, 49, 1822-1832.  
21085466 N.J.Moreland, M.Y.Tay, E.Lim, P.N.Paradkar, D.N.Doan, Y.H.Yau, S.Geifman Shochat, and S.G.Vasudevan (2010).
High affinity human antibody fragments to dengue virus non-structural protein 3.
  PLoS Negl Trop Dis, 4, e881.  
  21076642 S.A.Shiryaev, and A.Y.Strongin (2010).
Structural and functional parameters of the flaviviral protease: a promising antiviral drug target.
  Future Virol, 5, 593-606.  
20042502 S.Chandramouli, J.S.Joseph, S.Daudenarde, J.Gatchalian, C.Cornillez-Ty, and P.Kuhn (2010).
Serotype-specific structural differences in the protease-cofactor complexes of the dengue virus family.
  J Virol, 84, 3059-3067.
PDB codes: 3l6p 3lkw
20306283 V.Frecer, and S.Miertus (2010).
Design, structure-based focusing and in silico screening of combinatorial library of peptidomimetic inhibitors of Dengue virus NS2B-NS3 protease.
  J Comput Aided Mol Des, 24, 195-212.  
  20735839 W.Salaemae, M.Junaid, C.Angsuthanasombat, and G.Katzenmeier (2010).
Structure-guided mutagenesis of active site residues in the dengue virus two-component protease NS2B-NS3.
  J Biomed Sci, 17, 68.  
18796313 A.Sampath, and R.Padmanabhan (2009).
Molecular targets for flavivirus drug discovery.
  Antiviral Res, 81, 6.  
  20165556 B.J.Geiss, H.Stahla, A.M.Hannah, H.H.Gari, and S.M.Keenan (2009).
Focus on flaviviruses: current and future drug targets.
  Future Med Chem, 1, 327.  
19793813 R.Assenberg, E.Mastrangelo, T.S.Walter, A.Verma, M.Milani, R.J.Owens, D.I.Stuart, J.M.Grimes, and E.J.Mancini (2009).
Crystal structure of a novel conformational state of the flavivirus NS3 protein: implications for polyprotein processing and viral replication.
  J Virol, 83, 12895-12906.
PDB code: 2wv9
19589129 S.H.Ling, Z.Cheng, and H.Song (2009).
Structural aspects of RNA helicases in eukaryotic mRNA decay.
  Biosci Rep, 29, 339-349.  
19515772 T.Phan, R.K.Beran, C.Peters, I.C.Lorenz, and B.D.Lindenbach (2009).
Hepatitis C virus NS2 protein contributes to virus particle assembly via opposing epistatic interactions with the E1-E2 glycoprotein and NS3-NS4A enzyme complexes.
  J Virol, 83, 8379-8395.  
19583774 X.C.Su, K.Ozawa, H.Yagi, S.P.Lim, D.Wen, D.Ekonomiuk, D.Huang, T.H.Keller, S.Sonntag, A.Caflisch, S.G.Vasudevan, and G.Otting (2009).
NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease.
  FEBS J, 276, 4244-4255.  
19997625 X.C.Su, K.Ozawa, R.Qi, S.G.Vasudevan, S.P.Lim, and G.Otting (2009).
NMR analysis of the dynamic exchange of the NS2B cofactor between open and closed conformations of the West Nile virus NS2B-NS3 protease.
  PLoS Negl Trop Dis, 3, e561.  
18442976 A.V.Chernov, S.A.Shiryaev, A.E.Aleshin, B.I.Ratnikov, J.W.Smith, R.C.Liddington, and A.Y.Strongin (2008).
The two-component NS2B-NS3 proteinase represses DNA unwinding activity of the West Nile virus NS3 helicase.
  J Biol Chem, 283, 17270-17278.  
18625078 C.E.Gardella-Garcia, G.Perez-Ramirez, J.Navarrete-Espinosa, A.Cisneros, F.Jimenez-Rojas, L.R.Ramírez-Palacios, R.Rosado-Leon, M.Camacho-Nuez, and M.d.e. .L.Munoz (2008).
Specific genetic markers for detecting subtypes of dengue virus serotype-2 in isolates from the states of Oaxaca and Veracruz, Mexico.
  BMC Microbiol, 8, 117.  
18199634 C.G.Patkar, and R.J.Kuhn (2008).
Yellow Fever virus NS3 plays an essential role in virus assembly independent of its known enzymatic functions.
  J Virol, 82, 3342-3352.  
19008861 D.Luo, T.Xu, R.P.Watson, D.Scherer-Becker, A.Sampath, W.Jahnke, S.S.Yeong, C.H.Wang, S.P.Lim, A.Strongin, S.G.Vasudevan, and J.Lescar (2008).
Insights into RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein.
  EMBO J, 27, 3209-3219.
PDB codes: 2jlq 2jlr 2jls 2jlu 2jlv 2jlw 2jlx 2jly 2jlz
18644250 R.Perera, and R.J.Kuhn (2008).
Structural proteomics of dengue virus.
  Curr Opin Microbiol, 11, 369-377.  
18799730 V.Brass, J.M.Berke, R.Montserret, H.E.Blum, F.Penin, and D.Moradpour (2008).
Structural determinants for membrane association and dynamic organization of the hepatitis C virus NS3-4A complex.
  Proc Natl Acad Sci U S A, 105, 14545-14550.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer