spacer
spacer

PDBsum entry 2v6l

Go to PDB code: 
protein links
Protein transport PDB id
2v6l
Contents
Protein chains
(+ 22 more) 82 a.a.* *
* Residue conservation analysis
* C-alpha coords only
PDB id:
2v6l
Name: Protein transport
Title: Molecular model of a type iii secretion system needle
Structure: Mxih. Chain: 0, 1, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z. Engineered: yes. Other_details: residues 2-19 were modelled as an alpha helix. Residues 20-80 come from molecule a of PDB entry 2ca5 residues 81-85 were modelled as an alpha helix.
Source: Shigella flexneri. Organism_taxid: 623. Strain: pwr100. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Authors: J.E.Deane,P.Roversi,F.S.Cordes,S.Johnson,R.Kenjale,S.Daniell,F.Booy, W.L.Picking,W.D.Picking,A.J.Blocker,S.M.Lea
Key ref:
J.E.Deane et al. (2006). Molecular model of a type III secretion system needle: Implications for host-cell sensing. Proc Natl Acad Sci U S A, 103, 12529-12533. PubMed id: 16888041 DOI: 10.1073/pnas.0602689103
Date:
19-Jul-07     Release date:   31-Jul-07    
 Headers
 References

Protein chains
P0A223  (MXIH_SHIFL) -  Type 3 secretion system needle filament protein from Shigella flexneri
Seq:
Struc:
83 a.a.
82 a.a.
Key:    Secondary structure

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1073/pnas.0602689103 Proc Natl Acad Sci U S A 103:12529-12533 (2006)
PubMed id: 16888041  
 
 
Molecular model of a type III secretion system needle: Implications for host-cell sensing.
J.E.Deane, P.Roversi, F.S.Cordes, S.Johnson, R.Kenjale, S.Daniell, F.Booy, W.D.Picking, W.L.Picking, A.J.Blocker, S.M.Lea.
 
  ABSTRACT  
 
Type III secretion systems are essential virulence determinants for many Gram-negative bacterial pathogens. The type III secretion system consists of cytoplasmic, transmembrane, and extracellular domains. The extracellular domain is a hollow needle protruding above the bacterial surface and is held within a basal body that traverses both bacterial membranes. Effector proteins are translocated, via this external needle, directly into host cells, where they subvert normal cell functions to aid infection. Physical contact with host cells initiates secretion and leads to formation of a pore, thought to be contiguous with the needle channel, in the host-cell membrane. Here, we report the crystal structure of the Shigella flexneri needle subunit MxiH and a complete model for the needle assembly built into our three-dimensional EM reconstruction. The model, combined with mutagenesis data, reveals that signaling of host-cell contact is relayed through the needle via intersubunit contacts and suggests a mode of binding for a tip complex.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. Docking of the atomic model of MxiH into the EM density of the Shigella T3SS needle. (A) Molecule A of MxiH (ribbon) with the modeled N-terminal helix (cylinder) is shown as two views rotated by 90° about the long axis of the molecule. (B) End-on view of a 40-Å-thick section of the assembled needle. Each MxiH monomer is shown as in A and colored differently, starting from red and circling the needle to purple. EM density is shown as a blue mesh. (C) Stereo diagram of the side view of the assembled needle, colored as for B. Note that B and C are not shown at the same scale, and the needle assembly has an exterior diameter of 70 Å (16).
Figure 4.
Fig. 4. Characterization of the putative tip-interaction interface of a T3SS needle. (A) Surface representation of the side view of the T3SS needle with each monomer colored differently, starting from red and circling the needle to purple. Residues likely to effect interactions with the tip complex are highlighted as follows: P44 and Q51 in Shigella (white) and the equivalent of D46 in Yersinia (gray). (B) View and coloring as for A, with residues conserved between Shigella MxiH and Yersinia YscF highlighted. Residues conserved in the head domain: L37, P41, N43, P44, L46, L47, A48, and Q51 (white); in the tail domain, N62, S65, V68, K72, D73, I78, Q80, and F82 (gray) are shown for the top circle of the needle. (C Left) Ribbon diagram of LcrV (30) colored N (blue) to C (red) termini. (C Right) Overlay of the C-terminal helices of MxiH (red, residues 45–75) and LcrV (blue, residues 287–317), with all but the overlaid region made transparent to aid visualization. (D) Model of an LcrV tip complex (surface representation, gray) onto the tip of a T3SS needle.
 
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22699623 A.Loquet, N.G.Sgourakis, R.Gupta, K.Giller, D.Riedel, C.Goosmann, C.Griesinger, M.Kolbe, D.Baker, S.Becker, and A.Lange (2012).
Atomic model of the type III secretion system needle.
  Nature, 486, 276-279.
PDB code: 2lpz
21479247 H.Sato, M.L.Hunt, J.J.Weiner, A.T.Hansen, and D.W.Frank (2011).
Modified needle-tip PcrV proteins reveal distinct phenotypes relevant to the control of type III secretion and intoxication by Pseudomonas aeruginosa.
  PLoS One, 6, e18356.  
21112241 L.J.Worrall, E.Lameignere, and N.C.Strynadka (2011).
Structural overview of the bacterial injectisome.
  Curr Opin Microbiol, 14, 3-8.  
21182592 P.J.Matteï, E.Faudry, V.Job, T.Izoré, I.Attree, and A.Dessen (2011).
Membrane targeting and pore formation by the type III secretion system translocon.
  FEBS J, 278, 414-426.  
21031487 S.Chatterjee, D.Zhong, B.A.Nordhues, K.P.Battaile, S.Lovell, and R.N.De Guzman (2011).
The crystal structures of the Salmonella type III secretion system tip protein SipD in complex with deoxycholate and chenodeoxycholate.
  Protein Sci, 20, 75-86.
PDB codes: 3nzz 3o00 3o01 3o02
20086081 A.D.Roehrich, I.Martinez-Argudo, S.Johnson, A.J.Blocker, and A.K.Veenendaal (2010).
The extreme C terminus of Shigella flexneri IpaB is required for regulation of type III secretion, needle tip composition, and binding.
  Infect Immun, 78, 1682-1691.  
20453832 A.Diepold, M.Amstutz, S.Abel, I.Sorg, U.Jenal, and G.R.Cornelis (2010).
Deciphering the assembly of the Yersinia type III secretion injectisome.
  EMBO J, 29, 1928-1940.  
20845448 B.S.Barrett, A.P.Markham, R.Esfandiary, W.L.Picking, W.D.Picking, S.B.Joshi, and C.R.Middaugh (2010).
Formulation and immunogenicity studies of type III secretion system needle antigens as vaccine candidates.
  J Pharm Sci, 99, 4488-4496.  
20348249 E.Lorenzini, A.Singer, B.Singh, R.Lam, T.Skarina, N.Y.Chirgadze, A.Savchenko, and R.S.Gupta (2010).
Structure and protein-protein interaction studies on Chlamydia trachomatis protein CT670 (YscO Homolog).
  J Bacteriol, 192, 2746-2756.
PDB code: 3k29
20482311 G.R.Cornelis (2010).
The type III secretion injectisome, a complex nanomachine for intracellular 'toxin' delivery.
  Biol Chem, 391, 745-751.  
20043184 J.E.Deane, P.Abrusci, S.Johnson, and S.M.Lea (2010).
Timing is everything: the regulation of type III secretion.
  Cell Mol Life Sci, 67, 1065-1075.  
21046319 J.Peng, J.Yang, and Q.Jin (2010).
Research progress in Shigella in the postgenomic era.
  Sci China Life Sci, 53, 1284-1290.  
20543831 O.Poyraz, H.Schmidt, K.Seidel, F.Delissen, C.Ader, H.Tenenboim, C.Goosmann, B.Laube, A.F.Thünemann, A.Zychlinsky, M.Baldus, A.Lange, C.Griesinger, and M.Kolbe (2010).
Protein refolding is required for assembly of the type three secretion needle.
  Nat Struct Mol Biol, 17, 788-792.
PDB code: 2x9c
20494986 S.Plé, V.Job, A.Dessen, and I.Attree (2010).
Cochaperone interactions in export of the type III needle component PscF of Pseudomonas aeruginosa.
  J Bacteriol, 192, 3801-3808.  
20141759 T.Rathinavelan, L.Zhang, W.L.Picking, D.D.Weis, R.N.De Guzman, and W.Im (2010).
A repulsive electrostatic mechanism for protein export through the type III secretion apparatus.
  Biophys J, 98, 452-461.  
20060835 V.E.Galkin, W.H.Schmied, O.Schraidt, T.C.Marlovits, and E.H.Egelman (2010).
The structure of the Salmonella typhimurium type III secretion system needle shows divergence from the flagellar system.
  J Mol Biol, 396, 1392-1397.  
19017268 A.Botteaux, M.P.Sory, L.Biskri, C.Parsot, and A.Allaoui (2009).
MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus.
  Mol Microbiol, 71, 449-460.  
19396171 J.L.Hodgkinson, A.Horsley, D.Stabat, M.Simon, S.Johnson, P.C.da Fonseca, E.P.Morris, J.S.Wall, S.M.Lea, and A.J.Blocker (2009).
Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout.
  Nat Struct Mol Biol, 16, 477-485.  
19823588 M.D.Shortridge, and R.Powers (2009).
Structural and functional similarity between the bacterial type III secretion system needle protein PrgI and the eukaryotic apoptosis Bcl-2 proteins.
  PLoS One, 4, e7442.  
18458349 A.J.Blocker, J.E.Deane, A.K.Veenendaal, P.Roversi, J.L.Hodgkinson, S.Johnson, and S.M.Lea (2008).
What's the point of the type III secretion system needle?
  Proc Natl Acad Sci U S A, 105, 6507-6513.  
18491382 B.S.Barrett, W.L.Picking, W.D.Picking, and C.R.Middaugh (2008).
The response of type three secretion system needle proteins MxiHDelta5, BsaLDelta5, and PrgIDelta5 to temperature and pH.
  Proteins, 73, 632-643.  
18430138 C.A.Mueller, P.Broz, and G.R.Cornelis (2008).
The type III secretion system tip complex and translocon.
  Mol Microbiol, 68, 1085-1095.  
18202440 G.N.Schroeder, and H.Hilbi (2008).
Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion.
  Clin Microbiol Rev, 21, 134-156.  
18165300 H.J.Betts, L.E.Twiggs, M.S.Sal, P.B.Wyrick, and K.A.Fields (2008).
Bioinformatic and biochemical evidence for the identification of the type III secretion system needle protein of Chlamydia trachomatis.
  J Bacteriol, 190, 1680-1690.  
18485071 J.E.Deane, S.C.Graham, E.P.Mitchell, D.Flot, S.Johnson, and S.M.Lea (2008).
Crystal structure of Spa40, the specificity switch for the Shigella flexneri type III secretion system.
  Mol Microbiol, 69, 267-276.
PDB code: 2vt1
18250627 K.U.Wendt, M.S.Weiss, P.Cramer, and D.W.Heinz (2008).
Structures and diseases.
  Nat Struct Mol Biol, 15, 117-120.  
18281060 P.Sun, J.E.Tropea, B.P.Austin, S.Cherry, and D.S.Waugh (2008).
Structural characterization of the Yersinia pestis type III secretion system needle protein YscF in complex with its heterodimeric chaperone YscE/YscG.
  J Mol Biol, 377, 819-830.
PDB code: 2p58
18668121 R.Fronzes, H.Remaut, and G.Waksman (2008).
Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria.
  EMBO J, 27, 2271-2280.  
18258424 T.F.Moraes, T.Spreter, and N.C.Strynadka (2008).
Piecing together the type III injectisome of bacterial pathogens.
  Curr Opin Struct Biol, 18, 258-266.  
18602118 Y.A.Wang, X.Yu, S.Y.Ng, K.F.Jarrell, and E.H.Egelman (2008).
The structure of an archaeal pilus.
  J Mol Biol, 381, 456-466.  
18662905 Y.W.Tan, H.B.Yu, K.Y.Leung, J.Sivaraman, and Y.K.Mok (2008).
Structure of AscE and induced burial regions in AscE and AscG upon formation of the chaperone needle-subunit complex of type III secretion system in Aeromonas hydrophila.
  Protein Sci, 17, 1748-1760.
PDB code: 2q1k
17071752 A.J.Davis, and J.Mecsas (2007).
Mutations in the Yersinia pseudotuberculosis type III secretion system needle protein, YscF, that specifically abrogate effector translocation into host cells.
  J Bacteriol, 189, 83-97.  
17367391 A.K.Veenendaal, J.L.Hodgkinson, L.Schwarzer, D.Stabat, S.F.Zenk, and A.J.Blocker (2007).
The type III secretion system needle tip complex mediates host cell sensing and translocon insertion.
  Mol Microbiol, 63, 1719-1730.  
17578515 E.Faudry, V.Job, A.Dessen, I.Attree, and V.Forge (2007).
Type III secretion system translocator has a molten globule conformation both in its free and chaperone-bound forms.
  FEBS J, 274, 3601-3610.  
17327391 M.Espina, S.F.Ausar, C.R.Middaugh, M.A.Baxter, W.D.Picking, and W.L.Picking (2007).
Conformational stability and differential structural analysis of LcrV, PcrV, BipD, and SipD from type III secretion systems.
  Protein Sci, 16, 704-714.  
17470796 M.Quinaud, S.Plé, V.Job, C.Contreras-Martel, J.P.Simorre, I.Attree, and A.Dessen (2007).
Structure of the heterotrimeric complex that regulates type III secretion needle formation.
  Proc Natl Acad Sci U S A, 104, 7803-7808.
PDB code: 2uwj
17697254 P.Broz, C.A.Mueller, S.A.Müller, A.Philippsen, I.Sorg, A.Engel, and G.R.Cornelis (2007).
Function and molecular architecture of the Yersinia injectisome tip complex.
  Mol Microbiol, 65, 1311-1320.  
17077085 S.Johnson, P.Roversi, M.Espina, A.Olive, J.E.Deane, S.Birket, T.Field, W.D.Picking, A.J.Blocker, E.E.Galyov, W.L.Picking, and S.M.Lea (2007).
Self-chaperoning of the type III secretion system needle tip proteins IpaD and BipD.
  J Biol Chem, 282, 4035-4044.
PDB codes: 2cmq 2ixr 2j0n 2j0o 2j9t 2jaa
17617421 Y.Wang, A.N.Ouellette, C.W.Egan, T.Rathinavelan, W.Im, and R.N.De Guzman (2007).
Differences in the electrostatic surfaces of the type III secretion needle proteins PrgI, BsaL, and MxiH.
  J Mol Biol, 371, 1304-1314.
PDB code: 2jow
17020575 A.Economou, P.J.Christie, R.C.Fernandez, T.Palmer, G.V.Plano, and A.P.Pugsley (2006).
Secretion by numbers: Protein traffic in prokaryotes.
  Mol Microbiol, 62, 308-319.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer