spacer
spacer

PDBsum entry 2v53

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Cell adhesion PDB id
2v53

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
215 a.a. *
33 a.a. *
Ligands
NAG-NAG
SO4
Metals
_CA
* Residue conservation analysis
PDB id:
2v53
Name: Cell adhesion
Title: Crystal structure of a sparc-collagen complex
Structure: Sparc. Chain: a. Fragment: fs and ec domains, residues 70-212,221-303. Synonym: secreted protein acidic and rich in cysteine, osteonectin, on, basement-membrane protein 40, bm-40. Engineered: yes. Collagen alpha-1(iii) chain. Chain: b, c, d. Fragment: residues 564-584.
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: homo sapiens. Expression_system_taxid: 9606. Expression_system_cell_line: 293-ebna. Synthetic: yes. Organism_taxid: 9606
Resolution:
3.20Å     R-factor:   0.261     R-free:   0.320
Authors: E.Hohenester,T.Sasaki,C.Giudici,R.W.Farndale,H.P.Bachinger
Key ref:
E.Hohenester et al. (2008). Structural basis of sequence-specific collagen recognition by SPARC. Proc Natl Acad Sci U S A, 105, 18273-18277. PubMed id: 19011090 DOI: 10.1073/pnas.0808452105
Date:
01-Oct-08     Release date:   25-Nov-08    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P09486  (SPRC_HUMAN) -  SPARC from Homo sapiens
Seq:
Struc:
303 a.a.
215 a.a.
Protein chains
Pfam   ArchSchema ?
P02461  (CO3A1_HUMAN) -  Collagen alpha-1(III) chain from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1466 a.a.
33 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 10 residue positions (black crosses)

 

 
DOI no: 10.1073/pnas.0808452105 Proc Natl Acad Sci U S A 105:18273-18277 (2008)
PubMed id: 19011090  
 
 
Structural basis of sequence-specific collagen recognition by SPARC.
E.Hohenester, T.Sasaki, C.Giudici, R.W.Farndale, H.P.Bächinger.
 
  ABSTRACT  
 
Protein interactions with the collagen triple helix play a critical role in collagen fibril formation, cell adhesion, and signaling. However, structural insight into sequence-specific collagen recognition is limited to an integrin-peptide complex. A GVMGFO motif in fibrillar collagens (O denotes 4-hydroxyproline) binds 3 unrelated proteins: von Willebrand factor (VWF), discoidin domain receptor 2 (DDR2), and the extracellular matrix protein SPARC/osteonectin/BM-40. We report the crystal structure at 3.2 A resolution of human SPARC bound to a triple-helical 33-residue peptide harboring the promiscuous GVMGFO motif. SPARC recognizes the GVMGFO motifs of the middle and trailing collagen chains, burying a total of 720 A(2) of solvent-accessible collagen surface. SPARC binding does not distort the canonical triple helix of the collagen peptide. In contrast, a critical loop in SPARC is substantially remodelled upon collagen binding, creating a deep pocket that accommodates the phenylalanine residue of the trailing collagen chain ("Phe pocket"). This highly restrictive specificity pocket is shared with the collagen-binding integrin I-domains but differs strikingly from the shallow collagen-binding grooves of the platelet receptor glycoprotein VI and microbial adhesins. We speculate that binding of the GVMGFO motif to VWF and DDR2 also results in structural changes and the formation of a Phe pocket.
 
  Selected figure(s)  
 
Figure 1.
Crystal structure of SPARC FS-EC ΔαC bound to a 33-residue collagen peptide (stereoview). The FS and EC domains of SPARC are in green and cyan, respectively. Disulphide bridges are in pale pink, the glycan attached to N99 is in gray, and a calcium ion is shown as a purple sphere. The collagen peptide is shown as a Cα ribbon (leading chain, yellow; middle chain, orange; trailing chain, red). The chain termini, selected helices and the location of the αC deletion are labeled.
Figure 4.
Putative SPARC-binding sites in collagen IV. Shown are partial sequences of human collagen III (SwissProt entry P02461) and collagen IV (α1 chain, P02462; α2 chain, P08572). The SPARC-binding site in collagen III is highlighted; residues that are predicted to be strictly required for SPARC binding (see Prediction of SPARC-Binding Sites in Collagens I–IV) are in red, residues that should be apolar are in orange. The same coloring scheme is used to indicate the 4 putative SPARC-binding sites in collagen IV.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21044884 H.Xu, N.Raynal, S.Stathopoulos, J.Myllyharju, R.W.Farndale, and B.Leitinger (2011).
Collagen binding specificity of the discoidin domain receptors: binding sites on collagens II and III and molecular determinants for collagen IV recognition by DDR1.
  Matrix Biol, 30, 16-26.  
21280145 J.D.Parkin, J.D.San Antonio, V.Pedchenko, B.Hudson, S.T.Jensen, and J.Savige (2011).
Mapping structural landmarks, ligand binding sites, and missense mutations to the collagen IV heterotrimers predicts major functional domains, novel interactions, and variation in phenotypes in inherited diseases affecting basement membranes.
  Hum Mutat, 32, 127-143.  
21539794 L.Vitagliano, R.Berisio, and A.De Simone (2011).
Role of hydration in collagen recognition by bacterial adhesins.
  Biophys J, 100, 2253-2261.  
21384171 M.H.Huynh, S.J.Zhu, A.Kollara, T.Brown, R.Winklbauer, and M.Ringuette (2011).
Knockdown of SPARC leads to decreased cell-cell adhesion and lens cataracts during post-gastrula development in Xenopus laevis.
  Dev Genes Evol, 220, 315-327.  
21262375 S.Niland, C.Westerhausen, S.W.Schneider, B.Eckes, M.F.Schneider, and J.A.Eble (2011).
Biofunctionalization of a generic collagenous triple helix with the α2β1 integrin binding site allows molecular force measurements.
  Int J Biochem Cell Biol, 43, 721-731.  
19958839 A.Chlenski, and S.L.Cohn (2010).
Modulation of matrix remodeling by SPARC in neoplastic progression.
  Semin Cell Dev Biol, 21, 55-65.  
20204190 G.B.Fields (2010).
Synthesis and biological applications of collagen-model triple-helical peptides.
  Org Biomol Chem, 8, 1237-1258.  
20676409 J.A.Fallas, L.E.O'Leary, and J.D.Hartgerink (2010).
Synthetic collagen mimics: self-assembly of homotrimers, heterotrimers and higher order structures.
  Chem Soc Rev, 39, 3510-3527.  
20152144 J.Emsley (2010).
Convergent recognition of a triple helical hydrophobic motif in collagen.
  Structure, 18, 1-2.  
20007810 T.H.Brondijk, T.de Ruiter, J.Ballering, H.Wienk, R.J.Lebbink, H.van Ingen, R.Boelens, R.W.Farndale, L.Meyaard, and E.G.Huizinga (2010).
Crystal structure and collagen-binding site of immune inhibitory receptor LAIR-1: unexpected implications for collagen binding by platelet receptor GPVI.
  Blood, 115, 1364-1373.
PDB code: 3kgr
20837478 T.van Wieringen, S.Kalamajski, A.Lidén, D.Bihan, B.Guss, D.Heinegård, R.W.Farndale, and K.Rubin (2010).
The streptococcal collagen-binding protein CNE specifically interferes with alphaVbeta3-mediated cellular interactions with triple helical collagen.
  J Biol Chem, 285, 35803-35813.  
20118239 U.Venkatraman Girija, C.Furze, J.Toth, W.J.Schwaeble, D.A.Mitchell, A.H.Keeble, and R.Wallis (2010).
Engineering novel complement activity into a pulmonary surfactant protein.
  J Biol Chem, 285, 10546-10552.  
19401461 A.B.Herr, and R.W.Farndale (2009).
Structural insights into the interactions between platelet receptors and fibrillar collagen.
  J Biol Chem, 284, 19781-19785.  
19798598 A.D.Bradshaw (2009).
The role of SPARC in extracellular matrix assembly.
  J Cell Commun Signal, 3, 239-246.  
20043230 A.Koehler, S.Desser, B.Chang, J.MacDonald, U.Tepass, and M.Ringuette (2009).
Molecular evolution of SPARC: absence of the acidic module and expression in the endoderm of the starlet sea anemone, Nematostella vectensis.
  Dev Genes Evol, 219, 509-521.  
20004161 F.Carafoli, D.Bihan, S.Stathopoulos, A.D.Konitsiotis, M.Kvansakul, R.W.Farndale, B.Leitinger, and E.Hohenester (2009).
Crystallographic insight into collagen recognition by discoidin domain receptor 2.
  Structure, 17, 1573-1581.
PDB code: 2wuh
19798596 J.Nie, and E.H.Sage (2009).
SPARC functions as an inhibitor of adipogenesis.
  J Cell Commun Signal, 3, 247-254.  
19419965 M.M.Phelan, C.T.Thai, D.C.Soares, R.T.Ogata, P.N.Barlow, and J.Bramham (2009).
Solution structure of factor I-like modules from complement C7 reveals a pair of follistatin domains in compact pseudosymmetric arrangement.
  J Biol Chem, 284, 19637-19649.
PDB code: 2wcy
19349652 S.Liao, M.Ngiam, C.K.Chan, and S.Ramakrishna (2009).
Fabrication of nano-hydroxyapatite/collagen/osteonectin composites for bone graft applications.
  Biomed Mater, 4, 25019.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer