 |
PDBsum entry 2uv2
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transferase
|
 |
|
Title:
|
 |
Crystal structure of human ste20-like kinase bound to 4-(4-(5- cyclopropyl-1h-pyrazol-3-ylamino)-quinazolin-2-ylamino)-phenyl)- acetonitrile
|
|
Structure:
|
 |
Ste20-like serine-threonine kinase. Chain: a. Fragment: kinase domain, residues 19-320. Synonym: ste20-like kinase, ste20-related serine/threonine-protein kinase, ste20-related kinase, hslk, serine/threonine-protein kinase 2, ctcl tumor antigen se20-9. Engineered: yes. Mutation: yes
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 469008.
|
|
Resolution:
|
 |
|
2.30Å
|
R-factor:
|
0.199
|
R-free:
|
0.234
|
|
|
Authors:
|
 |
A.C.W.Pike,P.Rellos,O.Fedorov,T.Keates,E.Salah,P.Savitsky, E.Papagrigoriou,G.Bunkoczi,J.E.Debreczeni,F.Von Delft, C.H.Arrowsmith,A.Edwards,J.Weigelt,M.Sundstrom,S.Knapp
|
|
Key ref:
|
 |
A.C.Pike
et al.
(2008).
Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites.
Embo J,
27,
704-714.
PubMed id:
|
 |
|
Date:
|
 |
|
08-Mar-07
|
Release date:
|
20-Mar-07
|
|
|
Supersedes:
|
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
Q9H2G2
(SLK_HUMAN) -
STE20-like serine/threonine-protein kinase from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
1235 a.a.
287 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
*
PDB and UniProt seqs differ
at 2 residue positions (black
crosses)
|
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.2.7.11.1
- non-specific serine/threonine protein kinase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
|
1.
|
L-seryl-[protein] + ATP = O-phospho-L-seryl-[protein] + ADP + H+
|
|
2.
|
L-threonyl-[protein] + ATP = O-phospho-L-threonyl-[protein] + ADP + H+
|
|
 |
 |
 |
 |
 |
L-seryl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-seryl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
L-threonyl-[protein]
|
+
|
ATP
|
=
|
O-phospho-L-threonyl-[protein]
|
+
|
ADP
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
|
Embo J
27:704-714
(2008)
|
|
PubMed id:
|
|
|
|
|
| |
|
Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites.
|
|
A.C.Pike,
P.Rellos,
F.H.Niesen,
A.Turnbull,
A.W.Oliver,
S.A.Parker,
B.E.Turk,
L.H.Pearl,
S.Knapp.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Protein kinase autophosphorylation of activation segment residues is a common
regulatory mechanism in phosphorylation-dependent signalling cascades. However,
the molecular mechanisms that guarantee specific and efficient phosphorylation
of these sites have not been elucidated. Here, we report on three novel and
diverse protein kinase structures that reveal an exchanged activation segment
conformation. This dimeric arrangement results in an active kinase conformation
in trans, with activation segment phosphorylation sites in close proximity to
the active site of the interacting protomer. Analytical ultracentrifugation and
chemical cross-linking confirmed the presence of dimers in solution. Consensus
substrate sequences for each kinase showed that the identified activation
segment autophosphorylation sites are non-consensus substrate sites. Based on
the presented structural and functional data, a model for specific activation
segment phosphorylation at non-consensus substrate sites is proposed that is
likely to be common to other kinases from diverse subfamilies.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
E.Sala,
L.Guasch,
J.Iwaszkiewicz,
M.Mulero,
M.J.Salvadó,
M.Pinent,
V.Zoete,
A.Grosdidier,
S.Garcia-Vallvé,
O.Michielin,
and
G.Pujadas
(2011).
Identification of human IKK-2 inhibitors of natural origin (part I): modeling of the IKK-2 kinase domain, virtual screening and activity assays.
|
| |
PLoS One,
6,
e16903.
|
 |
|
|
|
|
 |
E.Salah,
E.Ugochukwu,
A.J.Barr,
F.von Delft,
S.Knapp,
and
J.M.Elkins
(2011).
Crystal structures of ABL-related gene (ABL2) in complex with imatinib, tozasertib (VX-680), and a type I inhibitor of the triazole carbothioamide class.
|
| |
J Med Chem,
54,
2359-2367.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.M.Ali,
T.Bagratuni,
E.L.Davenport,
P.R.Nowak,
M.C.Silva-Santisteban,
A.Hardcastle,
C.McAndrews,
M.G.Rowlands,
G.J.Morgan,
W.Aherne,
I.Collins,
F.E.Davies,
and
L.H.Pearl
(2011).
Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response.
|
| |
EMBO J,
30,
894-905.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.H.Lee,
C.H.Chen,
F.Suizu,
P.Huang,
C.Schiene-Fischer,
S.Daum,
Y.J.Zhang,
A.Goate,
R.H.Chen,
X.Z.Zhou,
and
K.P.Lu
(2011).
Death-associated protein kinase 1 phosphorylates Pin1 and inhibits its prolyl isomerase activity and cellular function.
|
| |
Mol Cell,
42,
147-159.
|
 |
|
|
|
|
 |
A.V.Cybulsky,
T.Takano,
J.Papillon,
J.Guillemette,
A.M.Herzenberg,
and
C.R.Kennedy
(2010).
Podocyte injury and albuminuria in mice with podocyte-specific overexpression of the Ste20-like kinase, SLK.
|
| |
Am J Pathol,
177,
2290-2299.
|
 |
|
|
|
|
 |
C.J.Record,
A.Chaikuad,
P.Rellos,
S.Das,
A.C.Pike,
O.Fedorov,
B.D.Marsden,
S.Knapp,
and
W.H.Lee
(2010).
Structural comparison of human mammalian ste20-like kinases.
|
| |
PLoS One,
5,
e11905.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Eswaran,
and
S.Knapp
(2010).
Insights into protein kinase regulation and inhibition by large scale structural comparison.
|
| |
Biochim Biophys Acta,
1804,
429-432.
|
 |
|
|
|
|
 |
J.M.Steichen,
G.H.Iyer,
S.Li,
S.A.Saldanha,
M.S.Deal,
V.L.Woods,
and
S.S.Taylor
(2010).
Global consequences of activation loop phosphorylation on protein kinase A.
|
| |
J Biol Chem,
285,
3825-3832.
|
 |
|
|
|
|
 |
L.Nováková,
S.Bezousková,
P.Pompach,
P.Spidlová,
L.Sasková,
J.Weiser,
and
P.Branny
(2010).
Identification of multiple substrates of the StkP Ser/Thr protein kinase in Streptococcus pneumoniae.
|
| |
J Bacteriol,
192,
3629-3638.
|
 |
|
|
|
|
 |
M.Vedadi,
C.H.Arrowsmith,
A.Allali-Hassani,
G.Senisterra,
and
G.A.Wasney
(2010).
Biophysical characterization of recombinant proteins: a key to higher structural genomics success.
|
| |
J Struct Biol,
172,
107-119.
|
 |
|
|
|
|
 |
T.P.Ko,
W.Y.Jeng,
C.I.Liu,
M.D.Lai,
C.L.Wu,
W.J.Chang,
H.L.Shr,
T.J.Lu,
and
A.H.Wang
(2010).
Structures of human MST3 kinase in complex with adenine, ADP and Mn2+.
|
| |
Acta Crystallogr D Biol Crystallogr,
66,
145-154.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Sunami,
N.Byrne,
R.E.Diehl,
K.Funabashi,
D.L.Hall,
M.Ikuta,
S.B.Patel,
J.M.Shipman,
R.F.Smith,
I.Takahashi,
J.Zugay-Murphy,
Y.Iwasawa,
K.J.Lumb,
S.K.Munshi,
and
S.Sharma
(2010).
Structural basis of human p70 ribosomal S6 kinase-1 regulation by activation loop phosphorylation.
|
| |
J Biol Chem,
285,
4587-4594.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.Wu,
J.Wang,
J.K.Na,
Q.Yu,
R.C.Moore,
F.Zee,
S.C.Huber,
and
R.Ming
(2010).
The origin of the non-recombining region of sex chromosomes in Carica and Vasconcellea.
|
| |
Plant J,
63,
801-810.
|
 |
|
|
|
|
 |
A.Edwards
(2009).
Large-scale structural biology of the human proteome.
|
| |
Annu Rev Biochem,
78,
541-568.
|
 |
|
|
|
|
 |
A.V.Korennykh,
P.F.Egea,
A.A.Korostelev,
J.Finer-Moore,
C.Zhang,
K.M.Shokat,
R.M.Stroud,
and
P.Walter
(2009).
The unfolded protein response signals through high-order assembly of Ire1.
|
| |
Nature,
457,
687-693.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.J.Storbeck,
S.Wagner,
P.O'Reilly,
M.McKay,
R.J.Parks,
H.Westphal,
and
L.A.Sabourin
(2009).
The Ldb1 and Ldb2 transcriptional cofactors interact with the Ste20-like kinase SLK and regulate cell migration.
|
| |
Mol Biol Cell,
20,
4174-4182.
|
 |
|
|
|
|
 |
D.Demidov,
S.Hesse,
A.Tewes,
T.Rutten,
J.Fuchs,
R.K.Ashtiyani,
S.Lein,
A.Fischer,
G.Reuter,
and
A.Houben
(2009).
Aurora1 phosphorylation activity on histone H3 and its cross-talk with other post-translational histone modifications in Arabidopsis.
|
| |
Plant J,
59,
221-230.
|
 |
|
|
|
|
 |
E.Delpire
(2009).
The mammalian family of sterile 20p-like protein kinases.
|
| |
Pflugers Arch,
458,
953-967.
|
 |
|
|
|
|
 |
F.Catalanotti,
G.Reyes,
V.Jesenberger,
G.Galabova-Kovacs,
R.de Matos Simoes,
O.Carugo,
and
M.Baccarini
(2009).
A Mek1-Mek2 heterodimer determines the strength and duration of the Erk signal.
|
| |
Nat Struct Mol Biol,
16,
294-303.
|
 |
|
|
|
|
 |
R.Scholz,
M.Suter,
T.Weimann,
C.Polge,
P.V.Konarev,
R.F.Thali,
R.D.Tuerk,
B.Viollet,
T.Wallimann,
U.Schlattner,
and
D.Neumann
(2009).
Homo-oligomerization and activation of AMP-activated protein kinase are mediated by the kinase domain alphaG-helix.
|
| |
J Biol Chem,
284,
27425-27437.
|
 |
|
|
|
|
 |
S.J.Lee,
M.H.Cobb,
and
E.J.Goldsmith
(2009).
Crystal structure of domain-swapped STE20 OSR1 kinase domain.
|
| |
Protein Sci,
18,
304-313.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Li,
and
A.G.Palmer
(2009).
Domain swapping in the kinase superfamily: OSR1 joins the mix.
|
| |
Protein Sci,
18,
678-681.
|
 |
|
|
|
|
 |
A.P.Kornev,
S.S.Taylor,
and
L.F.Ten Eyck
(2008).
A helix scaffold for the assembly of active protein kinases.
|
| |
Proc Natl Acad Sci U S A,
105,
14377-14382.
|
 |
|
|
|
|
 |
A.V.Statsuk,
D.J.Maly,
M.A.Seeliger,
M.A.Fabian,
W.H.Biggs,
D.J.Lockhart,
P.P.Zarrinkar,
J.Kuriyan,
and
K.M.Shokat
(2008).
Tuning a three-component reaction for trapping kinase substrate complexes.
|
| |
J Am Chem Soc,
130,
17568-17574.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Mieczkowski,
A.T.Iavarone,
and
T.Alber
(2008).
Auto-activation mechanism of the Mycobacterium tuberculosis PknB receptor Ser/Thr kinase.
|
| |
EMBO J,
27,
3186-3197.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Mazanka,
J.Alexander,
B.J.Yeh,
P.Charoenpong,
D.M.Lowery,
M.Yaffe,
and
E.L.Weiss
(2008).
The NDR/LATS family kinase Cbk1 directly controls transcriptional asymmetry.
|
| |
PLoS Biol,
6,
e203.
|
 |
|
|
|
|
 |
F.Villa,
M.Deak,
D.R.Alessi,
and
D.M.van Aalten
(2008).
Structure of the OSR1 kinase, a hypertension drug target.
|
| |
Proteins,
73,
1082-1087.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Eswaran,
M.Soundararajan,
R.Kumar,
and
S.Knapp
(2008).
UnPAKing the class differences among p21-activated kinases.
|
| |
Trends Biochem Sci,
33,
394-403.
|
 |
|
|
|
|
 |
J.L.Dermody,
J.M.Dreyfuss,
J.Villén,
B.Ogundipe,
S.P.Gygi,
P.J.Park,
A.S.Ponticelli,
C.L.Moore,
S.Buratowski,
and
M.E.Bucheli
(2008).
Unphosphorylated SR-like protein Npl3 stimulates RNA polymerase II elongation.
|
| |
PLoS ONE,
3,
e3273.
|
 |
|
|
|
|
 |
J.Wu,
W.Li,
B.P.Craddock,
K.W.Foreman,
M.J.Mulvihill,
Q.S.Ji,
W.T.Miller,
and
S.R.Hubbard
(2008).
Small-molecule inhibition and activation-loop trans-phosphorylation of the IGF1 receptor.
|
| |
EMBO J,
27,
1985-1994.
|
 |
|
PDB code:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |