 |
PDBsum entry 2up1
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Gene regulation/DNA
|
PDB id
|
|
|
|
2up1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Gene regulation/DNA
|
 |
|
Title:
|
 |
Structure of up1-telomeric DNA complex
|
|
Structure:
|
 |
DNA (5'-d(p Tp Ap Gp Gp Gp Tp Tp Ap Gp Gp G)-3'). Chain: b. Engineered: yes. Protein (heterogeneous nuclear ribonucleoprotein a1). Chain: a. Fragment: the two RNA-recognition motif domain, 1 - 196. Synonym: hnrnp a1, up1, helix-destabilizing protein, single-strand binding protein, hnrnp core protein a1
|
|
Source:
|
 |
Synthetic: yes. Homo sapiens. Human. Organism_taxid: 9606
|
|
Biol. unit:
|
 |
Tetramer (from
)
|
|
Resolution:
|
 |
|
2.10Å
|
R-factor:
|
0.195
|
R-free:
|
0.249
|
|
|
Authors:
|
 |
J.Ding,M.K.Hayashi,A.R.Krainer,R.-M.Xu
|
|
Key ref:
|
 |
J.Ding
et al.
(1999).
Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA.
Genes Dev,
13,
1102-1115.
PubMed id:
|
 |
|
Date:
|
 |
|
10-Jul-98
|
Release date:
|
10-Nov-99
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P09651
(ROA1_HUMAN) -
Heterogeneous nuclear ribonucleoprotein A1 from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
372 a.a.
183 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
|
|
|
|
|
|
|
|
T-A-G-G-G-T-T-A-G-G-G
11 bases
|
|
|
 |
 |
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Genes Dev
13:1102-1115
(1999)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA.
|
|
J.Ding,
M.K.Hayashi,
Y.Zhang,
L.Manche,
A.R.Krainer,
R.M.Xu.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Human hnRNP A1 is a versatile single-stranded nucleic acid-binding protein that
functions in various aspects of mRNA maturation and in telomere length
regulation. The crystal structure of UP1, the amino-terminal domain of human
hnRNP A1 containing two RNA-recognition motifs (RRMs), bound to a 12-nucleotide
single-stranded telomeric DNA has been determined at 2.1 A resolution. The
structure of the complex reveals the basis for sequence-specific recognition of
the single-stranded overhangs of human telomeres by hnRNP A1. It also provides
insights into the basis for high-affinity binding of hnRNP A1 to certain RNA
sequences, and for nucleic acid binding and functional synergy between the RRMs.
In the crystal structure, a UP1 dimer binds to two strands of DNA, and each
strand contacts RRM1 of one monomer and RRM2 of the other. The two DNA strands
are antiparallel, and regions of the protein flanking each RRM make important
contacts with DNA. The extensive protein-protein interface seen in the crystal
structure of the protein-DNA complex and the evolutionary conservation of the
interface residues suggest the importance of specific protein-protein
interactions for the sequence-specific recognition of single-stranded nucleic
acids. Models for regular packaging of telomere 3' overhangs and for
juxtaposition of alternative 5' splice sites are proposed.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.Cléry,
S.Jayne,
N.Benderska,
C.Dominguez,
S.Stamm,
and
F.H.Allain
(2011).
Molecular basis of purine-rich RNA recognition by the human SR-like protein Tra2-β1.
|
| |
Nat Struct Mol Biol,
18,
443-450.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Anunciado,
A.Dhar,
M.Gruebele,
and
A.M.Baranger
(2011).
Multistep kinetics of the U1A-SL2 RNA complex dissociation.
|
| |
J Mol Biol,
408,
896-908.
|
 |
|
|
|
|
 |
K.Tsuda,
T.Someya,
K.Kuwasako,
M.Takahashi,
F.He,
S.Unzai,
M.Inoue,
T.Harada,
S.Watanabe,
T.Terada,
N.Kobayashi,
M.Shirouzu,
T.Kigawa,
A.Tanaka,
S.Sugano,
P.Güntert,
S.Yokoyama,
and
Y.Muto
(2011).
Structural basis for the dual RNA-recognition modes of human Tra2-β RRM.
|
| |
Nucleic Acids Res,
39,
1538-1553.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.L.Flynn,
R.C.Centore,
R.J.O'Sullivan,
R.Rai,
A.Tse,
Z.Songyang,
S.Chang,
J.Karlseder,
and
L.Zou
(2011).
TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA.
|
| |
Nature,
471,
532-536.
|
 |
|
|
|
|
 |
A.C.Krüger,
M.K.Raarup,
M.M.Nielsen,
M.Kristensen,
F.Besenbacher,
J.Kjems,
and
V.Birkedal
(2010).
Interaction of hnRNP A1 with telomere DNA G-quadruplex structures studied at the single molecule level.
|
| |
Eur Biophys J,
39,
1343-1350.
|
 |
|
|
|
|
 |
C.Dominguez,
J.F.Fisette,
B.Chabot,
and
F.H.Allain
(2010).
Structural basis of G-tract recognition and encaging by hnRNP F quasi-RRMs.
|
| |
Nat Struct Mol Biol,
17,
853-861.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Khoshnevis,
P.Neumann,
and
R.Ficner
(2010).
Crystal structure of the RNA recognition motif of yeast translation initiation factor eIF3b reveals differences to human eIF3b.
|
| |
PLoS One,
5,
0.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.P.Han,
Y.H.Tang,
and
R.Smith
(2010).
Functional diversity of the hnRNPs: past, present and perspectives.
|
| |
Biochem J,
430,
379-392.
|
 |
|
|
|
|
 |
X.P.Wang,
and
N.G.Cooper
(2010).
Comparative in silico analyses of cpeb1-4 with functional predictions.
|
| |
Bioinform Biol Insights,
4,
61-83.
|
 |
|
|
|
|
 |
A.Y.Tan,
and
J.L.Manley
(2009).
The TET family of proteins: functions and roles in disease.
|
| |
J Mol Cell Biol,
1,
82-92.
|
 |
|
|
|
|
 |
H.L.Okunola,
and
A.R.Krainer
(2009).
Cooperative-binding and splicing-repressive properties of hnRNP A1.
|
| |
Mol Cell Biol,
29,
5620-5631.
|
 |
|
|
|
|
 |
J.A.Dembowski,
and
P.J.Grabowski
(2009).
The CUGBP2 splicing factor regulates an ensemble of branchpoints from perimeter binding sites with implications for autoregulation.
|
| |
PLoS Genet,
5,
e1000595.
|
 |
|
|
|
|
 |
M.Paramasivam,
A.Membrino,
S.Cogoi,
H.Fukuda,
H.Nakagama,
and
L.E.Xodo
(2009).
Protein hnRNP A1 and its derivative Up1 unfold quadruplex DNA in the human KRAS promoter: implications for transcription.
|
| |
Nucleic Acids Res,
37,
2841-2853.
|
 |
|
|
|
|
 |
O.Hosomi,
Y.Misawa,
A.Takeya,
Y.Matahira,
K.Sugahara,
Y.Kubohara,
F.Yamakura,
and
S.Kudo
(2009).
Novel oligosaccharide has suppressive activity against human leukemia cell proliferation.
|
| |
Glycoconj J,
26,
189-198.
|
 |
|
|
|
|
 |
P.H.Kuo,
L.G.Doudeva,
Y.T.Wang,
C.K.Shen,
and
H.S.Yuan
(2009).
Structural insights into TDP-43 in nucleic-acid binding and domain interactions.
|
| |
Nucleic Acids Res,
37,
1799-1808.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Li,
W.W.Kuhne,
A.Kulharya,
F.Z.Hudson,
K.Ha,
Z.Cao,
and
W.S.Dynan
(2009).
Involvement of p54(nrb), a PSF partner protein, in DNA double-strand break repair and radioresistance.
|
| |
Nucleic Acids Res,
37,
6746-6753.
|
 |
|
|
|
|
 |
T.T.Zhao,
T.E.Graber,
L.E.Jordan,
M.Cloutier,
S.M.Lewis,
I.Goulet,
J.Côté,
and
M.Holcik
(2009).
hnRNP A1 regulates UV-induced NF-kappaB signalling through destabilization of cIAP1 mRNA.
|
| |
Cell Death Differ,
16,
244-252.
|
 |
|
|
|
|
 |
A.Cléry,
M.Blatter,
and
F.H.Allain
(2008).
RNA recognition motifs: boring? Not quite.
|
| |
Curr Opin Struct Biol,
18,
290-298.
|
 |
|
|
|
|
 |
D.L.Mellman,
M.L.Gonzales,
C.Song,
C.A.Barlow,
P.Wang,
C.Kendziorski,
and
R.A.Anderson
(2008).
A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs.
|
| |
Nature,
451,
1013-1017.
|
 |
|
|
|
|
 |
G.V.Crichlow,
H.Zhou,
H.H.Hsiao,
K.B.Frederick,
M.Debrosse,
Y.Yang,
E.J.Folta-Stogniew,
H.J.Chung,
C.Fan,
E.M.De la Cruz,
D.Levens,
E.Lolis,
and
D.Braddock
(2008).
Dimerization of FIR upon FUSE DNA binding suggests a mechanism of c-myc inhibition.
|
| |
EMBO J,
27,
277-289.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Ge,
D.Zhou,
S.Tong,
Y.Gao,
M.Teng,
and
L.Niu
(2008).
Crystal structure and possible dimerization of the single RRM of human PABPN1.
|
| |
Proteins,
71,
1539-1545.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.C.Schöning,
C.Streitner,
I.M.Meyer,
Y.Gao,
and
D.Staiger
(2008).
Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis.
|
| |
Nucleic Acids Res,
36,
6977-6987.
|
 |
|
|
|
|
 |
L.Li,
H.Kang,
P.Liu,
N.Makkinje,
S.T.Williamson,
J.L.Leibowitz,
and
D.P.Giedroc
(2008).
Structural lability in stem-loop 1 drives a 5' UTR-3' UTR interaction in coronavirus replication.
|
| |
J Mol Biol,
377,
790-803.
|
 |
|
|
|
|
 |
T.Nagata,
Y.Takada,
A.Ono,
K.Nagata,
Y.Konishi,
T.Nukina,
M.Ono,
A.Matsugami,
A.Furukawa,
N.Fujimoto,
H.Fukuda,
H.Nakagama,
and
M.Katahira
(2008).
Elucidation of the mode of interaction in the UP1-telomerase RNA-telomeric DNA ternary complex which serves to recruit telomerase to telomeric DNA and to enhance the telomerase activity.
|
| |
Nucleic Acids Res,
36,
6816-6824.
|
 |
|
|
|
|
 |
Y.Hua,
T.A.Vickers,
H.L.Okunola,
C.F.Bennett,
and
A.R.Krainer
(2008).
Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice.
|
| |
Am J Hum Genet,
82,
834-848.
|
 |
|
|
|
|
 |
B.M.Lunde,
C.Moore,
and
G.Varani
(2007).
RNA-binding proteins: modular design for efficient function.
|
| |
Nat Rev Mol Cell Biol,
8,
479-490.
|
 |
|
|
|
|
 |
E.Allemand,
M.L.Hastings,
M.V.Murray,
M.P.Myers,
and
A.R.Krainer
(2007).
Alternative splicing regulation by interaction of phosphatase PP2Cgamma with nucleic acid-binding protein YB-1.
|
| |
Nat Struct Mol Biol,
14,
630-638.
|
 |
|
|
|
|
 |
H.P.Morgan,
P.Estibeiro,
M.A.Wear,
K.E.Max,
U.Heinemann,
L.Cubeddu,
M.P.Gallagher,
P.J.Sadler,
and
M.D.Walkinshaw
(2007).
Sequence specificity of single-stranded DNA-binding proteins: a novel DNA microarray approach.
|
| |
Nucleic Acids Res,
35,
e75.
|
 |
|
|
|
|
 |
J.C.Schöning,
C.Streitner,
D.R.Page,
S.Hennig,
K.Uchida,
E.Wolf,
M.Furuya,
and
D.Staiger
(2007).
Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation.
|
| |
Plant J,
52,
1119-1130.
|
 |
|
|
|
|
 |
K.R.Thickman,
E.A.Sickmier,
and
C.L.Kielkopf
(2007).
Alternative conformations at the RNA-binding surface of the N-terminal U2AF(65) RNA recognition motif.
|
| |
J Mol Biol,
366,
703-710.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.D.Shaw,
S.Chakrabarti,
G.Ghosh,
and
A.R.Krainer
(2007).
Deletion of the N-terminus of SF2/ASF permits RS-domain-independent pre-mRNA splicing.
|
| |
PLoS ONE,
2,
e854.
|
 |
|
|
|
|
 |
T.Kashima,
N.Rao,
and
J.L.Manley
(2007).
An intronic element contributes to splicing repression in spinal muscular atrophy.
|
| |
Proc Natl Acad Sci U S A,
104,
3426-3431.
|
 |
|
|
|
|
 |
F.Vitali,
A.Henning,
F.C.Oberstrass,
Y.Hargous,
S.D.Auweter,
M.Erat,
and
F.H.Allain
(2006).
Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling.
|
| |
EMBO J,
25,
150-162.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Liu,
F.Kouzine,
Z.Nie,
H.J.Chung,
Z.Elisha-Feil,
A.Weber,
K.Zhao,
and
D.Levens
(2006).
The FUSE/FBP/FIR/TFIIH system is a molecular machine programming a pulse of c-myc expression.
|
| |
EMBO J,
25,
2119-2130.
|
 |
|
|
|
|
 |
J.M.Pérez-Cañadillas
(2006).
Grabbing the message: structural basis of mRNA 3'UTR recognition by Hrp1.
|
| |
EMBO J,
25,
3167-3178.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Y.Tung,
M.P.Rosen,
L.M.Nelson,
P.J.Turek,
J.S.Witte,
D.W.Cramer,
M.I.Cedars,
and
R.A.Reijo-Pera
(2006).
Novel missense mutations of the Deleted-in-AZoospermia-Like (DAZL) gene in infertile women and men.
|
| |
Reprod Biol Endocrinol,
4,
40.
|
 |
|
|
|
|
 |
L.Cartegni,
M.L.Hastings,
J.A.Calarco,
E.de Stanchina,
and
A.R.Krainer
(2006).
Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2.
|
| |
Am J Hum Genet,
78,
63-77.
|
 |
|
|
|
|
 |
Q.S.Zhang,
L.Manche,
R.M.Xu,
and
A.R.Krainer
(2006).
hnRNP A1 associates with telomere ends and stimulates telomerase activity.
|
| |
RNA,
12,
1116-1128.
|
 |
|
|
|
|
 |
R.Martinez-Contreras,
J.F.Fisette,
F.U.Nasim,
R.Madden,
M.Cordeau,
and
B.Chabot
(2006).
Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing.
|
| |
PLoS Biol,
4,
e21.
|
 |
|
|
|
|
 |
S.D.Auweter,
F.C.Oberstrass,
and
F.H.Allain
(2006).
Sequence-specific binding of single-stranded RNA: is there a code for recognition?
|
| |
Nucleic Acids Res,
34,
4943-4959.
|
 |
|
|
|
|
 |
S.D.Auweter,
R.Fasan,
L.Reymond,
J.G.Underwood,
D.L.Black,
S.Pitsch,
and
F.H.Allain
(2006).
Molecular basis of RNA recognition by the human alternative splicing factor Fox-1.
|
| |
EMBO J,
25,
163-173.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Wang,
Y.Hu,
M.T.Overgaard,
F.V.Karginov,
O.C.Uhlenbeck,
and
D.B.McKay
(2006).
The domain of the Bacillus subtilis DEAD-box helicase YxiN that is responsible for specific binding of 23S rRNA has an RNA recognition motif fold.
|
| |
RNA,
12,
959-967.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Hargous,
G.M.Hautbergue,
A.M.Tintaru,
L.Skrisovska,
A.P.Golovanov,
J.Stevenin,
L.Y.Lian,
S.A.Wilson,
and
F.H.Allain
(2006).
Molecular basis of RNA recognition and TAP binding by the SR proteins SRp20 and 9G8.
|
| |
EMBO J,
25,
5126-5137.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Zhao,
B.L.Kormos,
D.L.Beveridge,
and
A.M.Baranger
(2006).
Molecular dynamics simulation studies of a protein-RNA complex with a selectively modified binding interface.
|
| |
Biopolymers,
81,
256-269.
|
 |
|
|
|
|
 |
A.Bandiera,
N.Medic,
A.A.Akindahunsi,
and
G.Manzini
(2005).
In-vitro dual binding activity of a evolutionarily related subgroup of hnRNP proteins.
|
| |
Mol Cell Biochem,
268,
121-127.
|
 |
|
|
|
|
 |
B.Beuth,
S.Pennell,
K.B.Arnvig,
S.R.Martin,
and
I.A.Taylor
(2005).
Structure of a Mycobacterium tuberculosis NusA-RNA complex.
|
| |
EMBO J,
24,
3576-3587.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Maris,
C.Dominguez,
and
F.H.Allain
(2005).
The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression.
|
| |
FEBS J,
272,
2118-2131.
|
 |
|
|
|
|
 |
E.A.Suswam,
Y.Y.Li,
H.Mahtani,
and
P.H.King
(2005).
Novel DNA-binding properties of the RNA-binding protein TIAR.
|
| |
Nucleic Acids Res,
33,
4507-4518.
|
 |
|
|
|
|
 |
H.Fukuda,
M.Katahira,
E.Tanaka,
Y.Enokizono,
N.Tsuchiya,
K.Higuchi,
M.Nagao,
and
H.Nakagama
(2005).
Unfolding of higher DNA structures formed by the d(CGG) triplet repeat by UP1 protein.
|
| |
Genes Cells,
10,
953-962.
|
 |
|
|
|
|
 |
K.Han,
G.Yeo,
P.An,
C.B.Burge,
and
P.J.Grabowski
(2005).
A combinatorial code for splicing silencing: UAGG and GGGG motifs.
|
| |
PLoS Biol,
3,
e158.
|
 |
|
|
|
|
 |
K.Moran-Jones,
L.Wayman,
D.D.Kennedy,
R.R.Reddel,
S.Sara,
M.J.Snee,
and
R.Smith
(2005).
hnRNP A2, a potential ssDNA/RNA molecular adapter at the telomere.
|
| |
Nucleic Acids Res,
33,
486-496.
|
 |
|
|
|
|
 |
M.J.Law,
E.J.Chambers,
P.S.Katsamba,
I.S.Haworth,
and
I.A.Laird-Offringa
(2005).
Kinetic analysis of the role of the tyrosine 13, phenylalanine 56 and glutamine 54 network in the U1A/U1 hairpin II interaction.
|
| |
Nucleic Acids Res,
33,
2917-2928.
|
 |
|
|
|
|
 |
R.Singh,
and
J.Valcárcel
(2005).
Building specificity with nonspecific RNA-binding proteins.
|
| |
Nat Struct Mol Biol,
12,
645-653.
|
 |
|
|
|
|
 |
R.Stefl,
L.Skrisovska,
and
F.H.Allain
(2005).
RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle.
|
| |
EMBO Rep,
6,
33-38.
|
 |
|
|
|
|
 |
J.Delaunay,
G.Le Mée,
N.Ezzeddine,
G.Labesse,
C.Terzian,
M.Capri,
and
O.Aït-Ahmed
(2004).
The Drosophila Bruno paralogue Bru-3 specifically binds the EDEN translational repression element.
|
| |
Nucleic Acids Res,
32,
3070-3082.
|
 |
|
|
|
|
 |
K.Choi,
J.H.Kim,
X.Li,
K.Y.Paek,
S.H.Ha,
S.H.Ryu,
E.Wimmer,
and
S.K.Jang
(2004).
Identification of cellular proteins enhancing activities of internal ribosomal entry sites by competition with oligodeoxynucleotides.
|
| |
Nucleic Acids Res,
32,
1308-1317.
|
 |
|
|
|
|
 |
M.Lei,
E.R.Podell,
and
T.R.Cech
(2004).
Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection.
|
| |
Nat Struct Mol Biol,
11,
1223-1229.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Schroeder,
A.Barta,
and
K.Semrad
(2004).
Strategies for RNA folding and assembly.
|
| |
Nat Rev Mol Cell Biol,
5,
908-919.
|
 |
|
|
|
|
 |
D.L.Black
(2003).
Mechanisms of alternative pre-messenger RNA splicing.
|
| |
Annu Rev Biochem,
72,
291-336.
|
 |
|
|
|
|
 |
D.L.Theobald,
and
S.C.Schultz
(2003).
Nucleotide shuffling and ssDNA recognition in Oxytricha nova telomere end-binding protein complexes.
|
| |
EMBO J,
22,
4314-4324.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.C.Pérez-Alvarado,
M.Martínez-Yamout,
M.M.Allen,
R.Grosschedl,
H.J.Dyson,
and
P.E.Wright
(2003).
Structure of the nuclear factor ALY: insights into post-transcriptional regulatory and mRNA nuclear export processes.
|
| |
Biochemistry,
42,
7348-7357.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.M.Pérez Cañadillas,
and
G.Varani
(2003).
Recognition of GU-rich polyadenylation regulatory elements by human CstF-64 protein.
|
| |
EMBO J,
22,
2821-2830.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Campillos,
J.R.Lamas,
M.A.García,
M.J.Bullido,
F.Valdivieso,
and
J.Vázquez
(2003).
Specific interaction of heterogeneous nuclear ribonucleoprotein A1 with the -219T allelic form modulates APOE promoter activity.
|
| |
Nucleic Acids Res,
31,
3063-3070.
|
 |
|
|
|
|
 |
C.K.Damgaard,
T.O.Tange,
and
J.Kjems
(2002).
hnRNP A1 controls HIV-1 mRNA splicing through cooperative binding to intron and exon splicing silencers in the context of a conserved secondary structure.
|
| |
RNA,
8,
1401-1415.
|
 |
|
|
|
|
 |
F.U.Nasim,
S.Hutchison,
M.Cordeau,
and
B.Chabot
(2002).
High-affinity hnRNP A1 binding sites and duplex-forming inverted repeats have similar effects on 5' splice site selection in support of a common looping out and repression mechanism.
|
| |
RNA,
8,
1078-1089.
|
 |
|
|
|
|
 |
J.B.Tuite,
J.C.Shiels,
and
A.M.Baranger
(2002).
Substitution of an essential adenine in the U1A-RNA complex with a non-polar isostere.
|
| |
Nucleic Acids Res,
30,
5269-5275.
|
 |
|
|
|
|
 |
J.C.Shiels,
J.B.Tuite,
S.J.Nolan,
and
A.M.Baranger
(2002).
Investigation of a conserved stacking interaction in target site recognition by the U1A protein.
|
| |
Nucleic Acids Res,
30,
550-558.
|
 |
|
|
|
|
 |
J.Vitali,
J.Ding,
J.Jiang,
Y.Zhang,
A.R.Krainer,
and
R.M.Xu
(2002).
Correlated alternative side chain conformations in the RNA-recognition motif of heterogeneous nuclear ribonucleoprotein A1.
|
| |
Nucleic Acids Res,
30,
1531-1538.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.C.Moraes,
W.H.Lee,
and
J.Kobarg
(2002).
Analysis of the structural determinants for RNA binding of the human protein AUF1/hnRNP D.
|
| |
Biol Chem,
383,
831-837.
|
 |
|
|
|
|
 |
M.J.Harley,
D.Toptygin,
T.Troxler,
and
J.F.Schildbach
(2002).
R150A mutant of F TraI relaxase domain: reduced affinity and specificity for single-stranded DNA and altered fluorescence anisotropy of a bound labeled oligonucleotide.
|
| |
Biochemistry,
41,
6460-6468.
|
 |
|
|
|
|
 |
P.Björk,
G.Baurén,
S.Jin,
Y.G.Tong,
T.R.Bürglin,
U.Hellman,
and
L.Wieslander
(2002).
A novel conserved RNA-binding domain protein, RBD-1, is essential for ribosome biogenesis.
|
| |
Mol Biol Cell,
13,
3683-3695.
|
 |
|
|
|
|
 |
P.Weisman-Shomer,
E.Cohen,
and
M.Fry
(2002).
Distinct domains in the CArG-box binding factor A destabilize tetraplex forms of the fragile X expanded sequence d(CGG)n.
|
| |
Nucleic Acids Res,
30,
3672-3681.
|
 |
|
|
|
|
 |
R.Campos-Olivas,
J.M.Louis,
D.Clerot,
B.Gronenborn,
and
A.M.Gronenborn
(2002).
The structure of a replication initiator unites diverse aspects of nucleic acid metabolism.
|
| |
Proc Natl Acad Sci U S A,
99,
10310-10315.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.C.Hou,
R.Lersch,
S.L.Gee,
J.L.Ponthier,
A.J.Lo,
M.Wu,
C.W.Turck,
M.Koury,
A.R.Krainer,
A.Mayeda,
and
J.G.Conboy
(2002).
Decrease in hnRNP A/B expression during erythropoiesis mediates a pre-mRNA splicing switch.
|
| |
EMBO J,
21,
6195-6204.
|
 |
|
|
|
|
 |
C.Mazza,
M.Ohno,
A.Segref,
I.W.Mattaj,
and
S.Cusack
(2001).
Crystal structure of the human nuclear cap binding complex.
|
| |
Mol Cell,
8,
383-396.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Marsich,
A.Bandiera,
G.Tell,
A.Scaloni,
and
G.Manzini
(2001).
A chicken hnRNP of the A/B family recognizes the single-stranded d(CCCTAA)(n) telomeric repeated motif.
|
| |
Eur J Biochem,
268,
139-148.
|
 |
|
|
|
|
 |
J.M.Pérez-Cañadillas,
and
G.Varani
(2001).
Recent advances in RNA-protein recognition.
|
| |
Curr Opin Struct Biol,
11,
53-58.
|
 |
|
|
|
|
 |
J.Zhu,
A.Mayeda,
and
A.R.Krainer
(2001).
Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins.
|
| |
Mol Cell,
8,
1351-1361.
|
 |
|
|
|
|
 |
S.Fiset,
and
B.Chabot
(2001).
hnRNP A1 may interact simultaneously with telomeric DNA and the human telomerase RNA in vitro.
|
| |
Nucleic Acids Res,
29,
2268-2275.
|
 |
|
|
|
|
 |
S.Jacquenet,
D.Ropers,
P.S.Bilodeau,
L.Damier,
A.Mougin,
C.M.Stoltzfus,
and
C.Branlant
(2001).
Conserved stem-loop structures in the HIV-1 RNA region containing the A3 3' splice site and its cis-regulatory element: possible involvement in RNA splicing.
|
| |
Nucleic Acids Res,
29,
464-478.
|
 |
|
|
|
|
 |
S.W.Jin,
N.Arno,
A.Cohen,
A.Shah,
Q.Xu,
N.Chen,
and
R.E.Ellis
(2001).
In Caenorhabditis elegans, the RNA-binding domains of the cytoplasmic polyadenylation element binding protein FOG-1 are needed to regulate germ cell fates.
|
| |
Genetics,
159,
1617-1630.
|
 |
|
|
|
|
 |
X.Manival,
L.Ghisolfi-Nieto,
G.Joseph,
P.Bouvet,
and
M.Erard
(2001).
RNA-binding strategies common to cold-shock domain- and RNA recognition motif-containing proteins.
|
| |
Nucleic Acids Res,
29,
2223-2233.
|
 |
|
|
|
|
 |
A.A.Antson
(2000).
Single-stranded-RNA binding proteins.
|
| |
Curr Opin Struct Biol,
10,
87-94.
|
 |
|
|
|
|
 |
A.Eversole,
and
N.Maizels
(2000).
In vitro properties of the conserved mammalian protein hnRNP D suggest a role in telomere maintenance.
|
| |
Mol Cell Biol,
20,
5425-5432.
|
 |
|
|
|
|
 |
F.H.Allain,
P.Bouvet,
T.Dieckmann,
and
J.Feigon
(2000).
Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin.
|
| |
EMBO J,
19,
6870-6881.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.A.Lewis,
K.Musunuru,
K.B.Jensen,
C.Edo,
H.Chen,
R.B.Darnell,
and
S.K.Burley
(2000).
Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome.
|
| |
Cell,
100,
323-332.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Zhou,
K.Hidaka,
and
B.Futcher
(2000).
The Est1 subunit of yeast telomerase binds the Tlc1 telomerase RNA.
|
| |
Mol Cell Biol,
20,
1947-1955.
|
 |
|
|
|
|
 |
J.Zhu,
and
A.R.Krainer
(2000).
Pre-mRNA splicing in the absence of an SR protein RS domain.
|
| |
Genes Dev,
14,
3166-3178.
|
 |
|
|
|
|
 |
K.Collins
(2000).
Mammalian telomeres and telomerase.
|
| |
Curr Opin Cell Biol,
12,
378-383.
|
 |
|
|
|
|
 |
L.P.Ford,
J.M.Suh,
W.E.Wright,
and
J.W.Shay
(2000).
Heterogeneous nuclear ribonucleoproteins C1 and C2 associate with the RNA component of human telomerase.
|
| |
Mol Cell Biol,
20,
9084-9091.
|
 |
|
|
|
|
 |
M.Inoue,
Y.Muto,
H.Sakamoto,
and
S.Yokoyama
(2000).
NMR studies on functional structures of the AU-rich element-binding domains of Hu antigen C.
|
| |
Nucleic Acids Res,
28,
1743-1750.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.R.Conte,
T.Grüne,
J.Ghuman,
G.Kelly,
A.Ladas,
S.Matthews,
and
S.Curry
(2000).
Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold.
|
| |
EMBO J,
19,
3132-3141.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Singh,
H.Banerjee,
and
M.R.Green
(2000).
Differential recognition of the polypyrimidine-tract by the general splicing factor U2AF65 and the splicing repressor sex-lethal.
|
| |
RNA,
6,
901-911.
|
 |
|
|
|
|
 |
T.R.Hughes,
R.G.Weilbaecher,
M.Walterscheid,
and
V.Lundblad
(2000).
Identification of the single-strand telomeric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein.
|
| |
Proc Natl Acad Sci U S A,
97,
6457-6462.
|
 |
|
|
|
|
 |
R.C.Deo,
J.B.Bonanno,
N.Sonenberg,
and
S.K.Burley
(1999).
Recognition of polyadenylate RNA by the poly(A)-binding protein.
|
| |
Cell,
98,
835-845.
|
 |
|
PDB code:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |