spacer
spacer

PDBsum entry 2ts1

Go to PDB code: 
protein links
Ligase (synthetase) PDB id
2ts1
Jmol
Contents
Protein chain
317 a.a. *
Waters ×110
* Residue conservation analysis
PDB id:
2ts1
Name: Ligase (synthetase)
Title: Structure of tyrosyl-t/RNA synthetase refined at 2.3 angstro resolution. Interaction of the enzyme with the tyrosyl aden intermediate
Structure: Tyrosyl-tRNA synthetase. Chain: a. Engineered: yes
Source: Geobacillus stearothermophilus. Organism_taxid: 1422
Biol. unit: Dimer (from PQS)
Resolution:
2.30Å     R-factor:   0.228    
Authors: P.Brick,T.N.Bhat,D.M.Blow
Key ref: P.Brick et al. (1989). Structure of tyrosyl-tRNA synthetase refined at 2.3 A resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. J Mol Biol, 208, 83-98. PubMed id: 2504923
Date:
29-Jun-89     Release date:   15-Oct-89    
Supersedes: 1ts1
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P00952  (SYY_GEOSE) -  Tyrosine--tRNA ligase
Seq:
Struc:
419 a.a.
317 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.6.1.1.1  - Tyrosine--tRNA ligase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + L-tyrosine + tRNA(Tyr) = AMP + diphosphate + L-tyrosyl-tRNA(Tyr)
ATP
+ L-tyrosine
+ tRNA(Tyr)
= AMP
+ diphosphate
+ L-tyrosyl-tRNA(Tyr)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site
 Gene Ontology (GO) functional annotation 
  GO annot!
  Cellular component     cytoplasm   1 term 
  Biological process     translation   3 terms 
  Biochemical function     nucleotide binding     6 terms  

 

 
    reference    
 
 
J Mol Biol 208:83-98 (1989)
PubMed id: 2504923  
 
 
Structure of tyrosyl-tRNA synthetase refined at 2.3 A resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate.
P.Brick, T.N.Bhat, D.M.Blow.
 
  ABSTRACT  
 
The crystal structure of tyrosyl-tRNA synthetase (EC 6.1.1.1) from Bacillus stearothermophilus has been refined to a crystallographic R-factor of 22.6% at 2.3 A resolution using a restrained least-squares procedure. In the final model the root-mean-square deviation from ideality for bond distances is 0.018 A and for angle distances is 0.044 A. Each monomer consists of three domains: an alpha/beta domain (residues 1 to 220) containing a six-stranded beta-sheet, an alpha-helical domain (248 to 318) containing five helices, and a disordered C-terminal domain (319 to 418) for which the electron density is very weak and where it has not been possible to trace the polypeptide chain. Complexes of the enzyme with the catalytic intermediate tyrosyl adenylate and the inhibitor tyrosinyl adenylate have also been refined to R-factors of 23.9% at 2.8 A resolution and 21.0% at 2.7 A resolution, respectively. Formation of the complexes results in some crystal cracking, but there is no significant difference in the conformation of the polypeptide chain of the three structures described here. The relative orientation of the alpha/beta and alpha-helical domains is similar to that previously observed for the "A" subunit of a deletion mutant lacking the C-terminal domain. Differences between these structures are confined to surface loops that are involved in crystal packing. Tyrosyl adenylate and tyrosinyl adenylate bind in similar conformations within a deep cleft in the alpha/beta domain. The tyrosine moiety is in the equivalent position to that occupied by tyrosine in crystals of the truncated mutant and makes similar strong polar interactions with the enzyme. The alpha-phosphate group interacts with the main-chain nitrogen of Asp38. The two hydroxyl groups of the ribose form strong interactions with the protein. The 2'-hydroxyl group interacts with the carboxylate of Asp194 and the main-chain nitrogen of Gly192 while the 3'-hydroxyl interacts with a tightly bound water molecule (Wat326). The adenine moiety appears to make no significant polar interactions with the protein. The results of site-directed mutagenesis studies are examined in the light of these refined structures.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21084281 K.A.Brown (2011).
A brief perspective of the determination of crystal structures of site-directed mutants of tyrosyl-tRNA synthetase.
  Protein Eng Des Sel, 24, 229-231.  
21119764 R.Giegé, and C.Sauter (2010).
Biocrystallography: past, present, future.
  HFSP J, 4, 109-121.  
19942682 X.Dong, M.Zhou, C.Zhong, B.Yang, N.Shen, and J.Ding (2010).
Crystal structure of Pyrococcus horikoshii tryptophanyl-tRNA synthetase and structure-based phylogenetic analysis suggest an archaeal origin of tryptophanyl-tRNA synthetase.
  Nucleic Acids Res, 38, 1401-1412.  
19128026 E.M.Corigliano, and J.J.Perona (2009).
Architectural underpinnings of the genetic code for glutamine.
  Biochemistry, 48, 676-687.  
19505149 F.Fan, and J.S.Blanchard (2009).
Toward the catalytic mechanism of a cysteine ligase (MshC) from Mycobacterium smegmatis: an enzyme involved in the biosynthetic pathway of mycothiol.
  Biochemistry, 48, 7150-7159.  
19098308 G.Sharma, and E.A.First (2009).
Thermodynamic Analysis Reveals a Temperature-dependent Change in the Catalytic Mechanism of Bacillus stearothermophilus Tyrosyl-tRNA Synthetase.
  J Biol Chem, 284, 4179-4190.  
19318213 Q.Wang, A.R.Parrish, and L.Wang (2009).
Expanding the genetic code for biological studies.
  Chem Biol, 16, 323-336.  
18653999 M.Liu, and S.K.Arora (2008).
Structural investigations of mode of action of drugs: structure and conformation of a novel peptidyl nucleoside antibiotic chryscandin hydrochloride pentahydrate.
  J Antibiot (Tokyo), 61, 322-325.  
18180246 N.Shen, M.Zhou, B.Yang, Y.Yu, X.Dong, and J.Ding (2008).
Catalytic mechanism of the tryptophan activation reaction revealed by crystal structures of human tryptophanyl-tRNA synthetase in different enzymatic states.
  Nucleic Acids Res, 36, 1288-1299.
PDB codes: 2quh 2qui 2quj 2quk
18560823 T.Li, M.Froeyen, and P.Herdewijn (2008).
Comparative structural dynamics of Tyrosyl-tRNA synthetase complexed with different substrates explored by molecular dynamics.
  Eur Biophys J, 38, 25-35.  
17598909 D.Tobi, and I.Bahar (2007).
Recruitment of rare 3-grams at functional sites: is this a mechanism for increasing enzyme specificity?
  BMC Bioinformatics, 8, 226.  
17576676 M.Tsunoda, Y.Kusakabe, N.Tanaka, S.Ohno, M.Nakamura, T.Senda, T.Moriguchi, N.Asai, M.Sekine, T.Yokogawa, K.Nishikawa, and K.T.Nakamura (2007).
Structural basis for recognition of cognate tRNA by tyrosyl-tRNA synthetase from three kingdoms.
  Nucleic Acids Res, 35, 4289-4300.
PDB code: 2dlc
16618920 J.M.Turner, J.Graziano, G.Spraggon, and P.G.Schultz (2006).
Structural plasticity of an aminoacyl-tRNA synthetase active site.
  Proc Natl Acad Sci U S A, 103, 6483-6488.
PDB codes: 1zh0 2ag6
16798914 N.Shen, L.Guo, B.Yang, Y.Jin, and J.Ding (2006).
Structure of human tryptophanyl-tRNA synthetase in complex with tRNATrp reveals the molecular basis of tRNA recognition and specificity.
  Nucleic Acids Res, 34, 3246-3258.
PDB codes: 2ake 2dr2
  16511038 A.Matte, G.V.Louie, J.Sivaraman, M.Cygler, and S.K.Burley (2005).
Structure of the pseudouridine synthase RsuA from Haemophilus influenzae.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 350-354.
PDB code: 1vio
15840810 L.Bonnefond, M.Frugier, R.Giegé, and J.Rudinger-Thirion (2005).
Human mitochondrial TyrRS disobeys the tyrosine identity rules.
  RNA, 11, 558-562.  
15694342 P.J.Paukstelis, R.Coon, L.Madabusi, J.Nowakowski, A.Monzingo, J.Robertus, and A.M.Lambowitz (2005).
A tyrosyl-tRNA synthetase adapted to function in group I intron splicing by acquiring a new RNA binding surface.
  Mol Cell, 17, 417-428.
PDB code: 1y42
15671170 T.Kobayashi, K.Sakamoto, T.Takimura, R.Sekine, V.P.Kelly, K.Vincent, K.Kamata, S.Nishimura, and S.Yokoyama (2005).
Structural basis of nonnatural amino acid recognition by an engineered aminoacyl-tRNA synthetase for genetic code expansion.
  Proc Natl Acad Sci U S A, 102, 1366-1371.
PDB codes: 1vbn 1wq3 1wq4
15378068 J.Xie, L.Wang, N.Wu, A.Brock, G.Spraggon, and P.G.Schultz (2004).
The site-specific incorporation of p-iodo-L-phenylalanine into proteins for structure determination.
  Nat Biotechnol, 22, 1297-1301.
PDB code: 1t6h
15489861 S.Hauenstein, C.M.Zhang, Y.M.Hou, and J.J.Perona (2004).
Shape-selective RNA recognition by cysteinyl-tRNA synthetase.
  Nat Struct Mol Biol, 11, 1134-1141.
PDB code: 1u0b
15522458 T.A.Cropp, and P.G.Schultz (2004).
An expanding genetic code.
  Trends Genet, 20, 625-630.  
15037773 X.Chen, G.Mohr, and A.M.Lambowitz (2004).
The Neurospora crassa CYT-18 protein C-terminal RNA-binding domain helps stabilize interdomain tertiary interactions in group I introns.
  RNA, 10, 634-644.  
12920298 J.W.Chin, T.A.Cropp, J.C.Anderson, M.Mukherji, Z.Zhang, and P.G.Schultz (2003).
An expanded eukaryotic genetic code.
  Science, 301, 964-967.  
12737824 L.D.Sherlin, and J.J.Perona (2003).
tRNA-dependent active site assembly in a class I aminoacyl-tRNA synthetase.
  Structure, 11, 591-603.
PDB code: 1nyl
12518054 L.Wang, Z.Zhang, A.Brock, and P.G.Schultz (2003).
Addition of the keto functional group to the genetic code of Escherichia coli.
  Proc Natl Acad Sci U S A, 100, 56-61.  
14690420 M.L.Bovee, M.A.Pierce, and C.S.Francklyn (2003).
Induced fit and kinetic mechanism of adenylation catalyzed by Escherichia coli threonyl-tRNA synthetase.
  Biochemistry, 42, 15102-15113.  
12754495 T.Kobayashi, O.Nureki, R.Ishitani, A.Yaremchuk, M.Tukalo, S.Cusack, K.Sakamoto, and S.Yokoyama (2003).
Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion.
  Nat Struct Biol, 10, 425-432.
PDB code: 1j1u
12110594 A.Yaremchuk, I.Kriklivyi, M.Tukalo, and S.Cusack (2002).
Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition.
  EMBO J, 21, 3829-3840.
PDB codes: 1h3e 1h3f
12097643 D.Kiga, K.Sakamoto, K.Kodama, T.Kigawa, T.Matsuda, T.Yabuki, M.Shirouzu, Y.Harada, H.Nakayama, K.Takio, Y.Hasegawa, Y.Endo, I.Hirao, and S.Yokoyama (2002).
An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system.
  Proc Natl Acad Sci U S A, 99, 9715-9720.  
12011422 D.Zhang, N.Vaidehi, W.A.Goddard, J.F.Danzer, and D.Debe (2002).
Structure-based design of mutant Methanococcus jannaschii tyrosyl-tRNA synthetase for incorporation of O-methyl-L-tyrosine.
  Proc Natl Acad Sci U S A, 99, 6579-6584.  
12016229 J.Austin, and E.A.First (2002).
Comparison of the catalytic roles played by the KMSKS motif in the human and Bacillus stearothermophilus trosyl-tRNA synthetases.
  J Biol Chem, 277, 28394-28399.  
12005430 J.I.Guijarro, A.Pintar, A.Prochnicka-Chalufour, V.Guez, B.Gilquin, H.Bedouelle, and M.Delepierre (2002).
Structure and dynamics of the anticodon arm binding domain of Bacillus stearothermophilus Tyrosyl-tRNA synthetase.
  Structure, 10, 311-317.
PDB code: 1jh3
12154230 J.W.Chin, A.B.Martin, D.S.King, L.Wang, and P.G.Schultz (2002).
Addition of a photocrosslinking amino acid to the genetic code of Escherichiacoli.
  Proc Natl Acad Sci U S A, 99, 11020-11024.  
12032090 K.J.Newberry, Y.M.Hou, and J.J.Perona (2002).
Structural origins of amino acid selection without editing by cysteinyl-tRNA synthetase.
  EMBO J, 21, 2778-2787.
PDB codes: 1li5 1li7
12427973 X.L.Yang, R.J.Skene, D.E.McRee, and P.Schimmel (2002).
Crystal structure of a human aminoacyl-tRNA synthetase cytokine.
  Proc Natl Acad Sci U S A, 99, 15369-15374.
PDB code: 1n3l
11330299 A.Böck (2001).
Molecular biology. Invading the genetic code.
  Science, 292, 453-454.  
11377204 F.von Delft, A.Lewendon, V.Dhanaraj, T.L.Blundell, C.Abell, and A.G.Smith (2001).
The crystal structure of E. coli pantothenate synthetase confirms it as a member of the cytidylyltransferase superfamily.
  Structure, 9, 439-450.
PDB code: 1iho
11170439 J.F.Chen, T.Li, E.D.Wang, and Y.L.Wang (2001).
Effect of alanine-293 replacement on the activity, ATP binding, and editing of Escherichia coli leucyl-tRNA synthetase.
  Biochemistry, 40, 1144-1149.  
11590011 L.Ribas de Pouplana, and P.Schimmel (2001).
Aminoacyl-tRNA synthetases: potential markers of genetic code development.
  Trends Biochem Sci, 26, 591-596.  
12762019 O.Nureki, S.Fukai, S.Sekine, A.Shimada, T.Terada, T.Nakama, M.Shirouzu, D.G.Vassylyev, and S.Yokoyama (2001).
Structural basis for amino acid and tRNA recognition by class I aminoacyl-tRNA synthetases.
  Cold Spring Harb Symp Quant Biol, 66, 167-173.  
11584022 T.Nakama, O.Nureki, and S.Yokoyama (2001).
Structural basis for the recognition of isoleucyl-adenylate and an antibiotic, mupirocin, by isoleucyl-tRNA synthetase.
  J Biol Chem, 276, 47387-47393.
PDB codes: 1jzq 1jzs
11567092 X.Qiu, C.A.Janson, W.W.Smith, S.M.Green, P.McDevitt, K.Johanson, P.Carter, M.Hibbs, C.Lewis, A.Chalker, A.Fosberry, J.Lalonde, J.Berge, P.Brown, C.S.Houge-Frydrych, and R.L.Jarvest (2001).
Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors.
  Protein Sci, 10, 2008-2016.
PDB codes: 1jii 1jij 1jik 1jil
10969988 A.K.Forrest, R.L.Jarvest, L.M.Mensah, P.J.O'Hanlon, A.J.Pope, and R.J.Sheppard (2000).
Aminoalkyl adenylate and aminoacyl sulfamate intermediate analogues differing greatly in affinity for their cognate Staphylococcus aureus aminoacyl tRNA synthetases.
  Bioorg Med Chem Lett, 10, 1871-1874.  
10675344 B.L.Staker, P.Korber, J.C.Bardwell, and M.A.Saper (2000).
Structure of Hsp15 reveals a novel RNA-binding motif.
  EMBO J, 19, 749-757.
PDB code: 1dm9
10913247 G.Desogus, F.Todone, P.Brick, and S.Onesti (2000).
Active site of lysyl-tRNA synthetase: structural studies of the adenylation reaction.
  Biochemistry, 39, 8418-8425.
PDB codes: 1e1o 1e1t 1e22 1e24
10673435 I.Sugiura, O.Nureki, Y.Ugaji-Yoshikawa, S.Kuwabara, A.Shimada, M.Tateno, B.Lorber, R.Giegé, D.Moras, S.Yokoyama, and M.Konno (2000).
The 2.0 A crystal structure of Thermus thermophilus methionyl-tRNA synthetase reveals two RNA-binding modules.
  Structure, 8, 197-208.
PDB code: 1a8h
10828991 J.F.Chen, N.N.Guo, T.Li, E.D.Wang, and Y.L.Wang (2000).
CP1 domain in Escherichia coli leucyl-tRNA synthetase is crucial for its editing function.
  Biochemistry, 39, 6726-6731.  
10629197 M.A.Valvano, C.L.Marolda, M.Bittner, M.Glaskin-Clay, T.L.Simon, and J.D.Klena (2000).
The rfaE gene from Escherichia coli encodes a bifunctional protein involved in biosynthesis of the lipopolysaccharide core precursor ADP-L-glycero-D-manno-heptose.
  J Bacteriol, 182, 488-497.  
10966471 M.Ibba, and D.Soll (2000).
Aminoacyl-tRNA synthesis.
  Annu Rev Biochem, 69, 617-650.  
11052665 M.Praetorius-Ibba, N.Stange-Thomann, M.Kitabatake, K.Ali, I.Söll, C.W.Carter, M.Ibba, and D.Söll (2000).
Ancient adaptation of the active site of tryptophanyl-tRNA synthetase for tryptophan binding.
  Biochemistry, 39, 13136-13143.  
10744027 R.Geslain, F.Martin, B.Delagoutte, J.Cavarelli, J.Gangloff, and G.Eriani (2000).
In vivo selection of lethal mutations reveals two functional domains in arginyl-tRNA synthetase.
  RNA, 6, 434-448.  
11041850 S.Onesti, G.Desogus, A.Brevet, J.Chen, P.Plateau, S.Blanquet, and P.Brick (2000).
Structural studies of lysyl-tRNA synthetase: conformational changes induced by substrate binding.
  Biochemistry, 39, 12853-12861.
PDB codes: 1bbu 1bbw
  10716174 V.A.Ilyin, B.Temple, M.Hu, G.Li, Y.Yin, P.Vachette, and C.W.Carter (2000).
2.9 A crystal structure of ligand-free tryptophanyl-tRNA synthetase: domain movements fragment the adenine nucleotide binding site.
  Protein Sci, 9, 218-231.
PDB code: 1d2r
10677223 V.Guez, S.Nair, A.Chaffotte, and H.Bedouelle (2000).
The anticodon-binding domain of tyrosyl-tRNA synthetase: state of folding and origin of the crystallographic disorder.
  Biochemistry, 39, 1739-1747.  
10630994 Y.Xin, W.Li, and E.A.First (2000).
The 'KMSKS' motif in tyrosyl-tRNA synthetase participates in the initial binding of tRNA(Tyr).
  Biochemistry, 39, 340-347.  
10508782 C.H.Weber, Y.S.Park, S.Sanker, C.Kent, and M.L.Ludwig (1999).
A prototypical cytidylyltransferase: CTP:glycerol-3-phosphate cytidylyltransferase from bacillus subtilis.
  Structure, 7, 1113-1124.
PDB code: 1coz
10438485 K.Wakasugi, and P.Schimmel (1999).
Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase.
  J Biol Chem, 274, 23155-23159.  
10385005 L.Jermutus, V.Guez, and H.Bedouelle (1999).
Disordered C-terminal domain of tyrosyl-tRNA synthetase: secondary structure prediction.
  Biochimie, 81, 235-244.  
10089514 C.Briand, A.Poterszman, A.Mitschler, M.Yusupov, J.C.Thierry, and D.Moras (1998).
Crystals of Thermus thermophilus tRNAAsp complexed with its cognate aspartyl-tRNA synthetase have a solvent content of 75%. Comparison with other aminoacylation systems.
  Acta Crystallogr D Biol Crystallogr, 54, 1382-1386.  
9736621 J.Cavarelli, B.Delagoutte, G.Eriani, J.Gangloff, and D.Moras (1998).
L-arginine recognition by yeast arginyl-tRNA synthetase.
  EMBO J, 17, 5438-5448.
PDB code: 1bs2
9427763 K.Wakasugi, C.L.Quinn, N.Tao, and P.Schimmel (1998).
Genetic code in evolution: switching species-specific aminoacylation with a peptide transplant.
  EMBO J, 17, 297-305.  
9748544 Q.S.Zhang, E.D.Wang, and Y.L.Wang (1998).
The role of tryptophan residues in Escherichia coli arginyl-tRNA synthetase.
  Biochim Biophys Acta, 1387, 136-142.  
9811828 R.S.Lipman, and Y.M.Hou (1998).
Aminoacylation of tRNA in the evolution of an aminoacyl-tRNA synthetase.
  Proc Natl Acad Sci U S A, 95, 13495-13500.  
9562563 V.L.Rath, L.F.Silvian, B.Beijer, B.S.Sproat, and T.A.Steitz (1998).
How glutaminyl-tRNA synthetase selects glutamine.
  Structure, 6, 439-449.
PDB code: 1qtq
9660761 Y.C.Park, and H.Bedouelle (1998).
Dimeric tyrosyl-tRNA synthetase from Bacillus stearothermophilus unfolds through a monomeric intermediate. A quantitative analysis under equilibrium conditions.
  J Biol Chem, 273, 18052-18059.  
9115984 A.Aberg, A.Yaremchuk, M.Tukalo, B.Rasmussen, and S.Cusack (1997).
Crystal structure analysis of the activation of histidine by Thermus thermophilus histidyl-tRNA synthetase.
  Biochemistry, 36, 3084-3094.
PDB codes: 1adj 1ady
9062123 C.Stehlin, D.H.Heacock, H.Liu, and K.Musier-Forsyth (1997).
Chemical modification and site-directed mutagenesis of the single cysteine in motif 3 of class II Escherichia coli prolyl-tRNA synthetase.
  Biochemistry, 36, 2932-2938.  
9261082 H.Savage, G.Montoya, C.Svensson, J.D.Schwenn, and I.Sinning (1997).
Crystal structure of phosphoadenylyl sulphate (PAPS) reductase: a new family of adenine nucleotide alpha hydrolases.
  Structure, 5, 895-906.
PDB code: 1sur
9405405 I.Gruić-Sovulj, H.C.Lüdemann, F.Hillenkamp, Kućan IWDZ, and J.Peter-Katalinić (1997).
Detection of noncovalent tRNA.aminoacyl-tRNA synthetase complexes by matrix-assisted laser desorption/ionization mass spectrometry.
  J Biol Chem, 272, 32084-32091.  
9207058 J.G.Arnez, J.G.Augustine, D.Moras, and C.S.Francklyn (1997).
The first step of aminoacylation at the atomic level in histidyl-tRNA synthetase.
  Proc Natl Acad Sci U S A, 94, 7144-7149.
PDB codes: 1kmm 1kmn
9207015 W.Gong, M.O'Gara, R.M.Blumenthal, and X.Cheng (1997).
Structure of pvu II DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment.
  Nucleic Acids Res, 25, 2702-2715.
PDB code: 1boo
8916927 D.W.Ohannesian, J.Oh, and Y.M.Hou (1996).
Mutational analysis of a leucine heptad repeat motif in a class I aminoacyl-tRNA synthetase.
  Biochemistry, 35, 14405-14412.  
8756522 I.A.Vakser (1996).
Low-resolution docking: prediction of complexes for underdetermined structures.
  Biopolymers, 39, 455-464.  
8597593 J.A.Moore, A.Chen, M.Yan, A.P.Hurlburt, and C.D.Poulter (1996).
Identification of the gltX gene encoding glutamyl-tRNA synthetase from Methanobacterium thermoautotrophicum.
  Biochim Biophys Acta, 1305, 113-116.  
8611551 L.Lin, and P.Schimmel (1996).
Mutational analysis suggests the same design for editing activities of two tRNA synthetases.
  Biochemistry, 35, 5596-5601.  
8552597 L.Ribas de Pouplana, M.Frugier, C.L.Quinn, and P.Schimmel (1996).
Evidence that two present-day components needed for the genetic code appeared after nucleated cells separated from eubacteria.
  Proc Natl Acad Sci U S A, 93, 166-170.  
8944770 M.H.Mazauric, J.Reinbolt, B.Lorber, C.Ebel, G.Keith, R.Giegé, and D.Kern (1996).
An example of non-conservation of oligomeric structure in prokaryotic aminoacyl-tRNA synthetases. Biochemical and structural properties of glycyl-tRNA synthetase from Thermus thermophilus.
  Eur J Biochem, 241, 814-826.  
8797857 R.K.Airas (1996).
Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli.
  Eur J Biochem, 240, 223-231.  
8610114 S.P.Hale, and P.Schimmel (1996).
Protein synthesis editing by a DNA aptamer.
  Proc Natl Acad Sci U S A, 93, 2755-2758.  
7479716 A.D.Yaremchuk, S.Cusack, A.Aberg, O.Gudzera, I.Kryklivyi, and M.Tukalo (1995).
Crystallization of Thermus thermophilus histidyl-tRNA synthetase and its complex with tRNAHis.
  Proteins, 22, 426-428.  
7537870 C.Vincent, F.Borel, J.C.Willison, R.Leberman, and M.Härtlein (1995).
Seryl-tRNA synthetase from Escherichia coli: functional evidence for cross-dimer tRNA binding during aminoacylation.
  Nucleic Acids Res, 23, 1113-1118.  
  7556056 D.T.Logan, M.H.Mazauric, D.Kern, and D.Moras (1995).
Crystal structure of glycyl-tRNA synthetase from Thermus thermophilus.
  EMBO J, 14, 4156-4167.
PDB code: 1ati
8532520 E.Schmitt, M.Panvert, S.Blanquet, and Y.Mechulam (1995).
Transition state stabilization by the 'high' motif of class I aminoacyl-tRNA synthetases: the case of Escherichia coli methionyl-tRNA synthetase.
  Nucleic Acids Res, 23, 4793-4798.  
  7796819 H.Bedouelle, and R.Nageotte (1995).
Macromolecular recognition through electrostatic repulsion.
  EMBO J, 14, 2945-2950.  
  7556055 J.G.Arnez, D.C.Harris, A.Mitschler, B.Rees, C.S.Francklyn, and D.Moras (1995).
Crystal structure of histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate.
  EMBO J, 14, 4143-4155.
PDB code: 1htt
7773747 M.Delarue (1995).
Aminoacyl-tRNA synthetases.
  Curr Opin Struct Biol, 5, 48-55.  
7479698 P.Bork, L.Holm, E.V.Koonin, and C.Sander (1995).
The cytidylyltransferase superfamily: identification of the nucleotide-binding site and fold prediction.
  Proteins, 22, 259-266.  
7878729 P.Schimmel, and E.Schmidt (1995).
Making connections: RNA-dependent amino acid recognition.
  Trends Biochem Sci, 20, 1-2.  
7743129 S.Doublié, G.Bricogne, C.Gilmore, and C.W.Carter (1995).
Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase.
  Structure, 3, 17-31.  
7735833 S.Onesti, A.D.Miller, and P.Brick (1995).
The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli.
  Structure, 3, 163-176.
PDB code: 1lyl
  8313877 J.Cavarelli, G.Eriani, B.Rees, M.Ruff, M.Boeglin, A.Mitschler, F.Martin, J.Gangloff, J.C.Thierry, and D.Moras (1994).
The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction.
  EMBO J, 13, 327-337.
PDB code: 1asz
  8045252 M.Delarue, A.Poterszman, S.Nikonov, M.Garber, D.Moras, and J.C.Thierry (1994).
Crystal structure of a prokaryotic aspartyl tRNA-synthetase.
  EMBO J, 13, 3219-3229.  
  7517395 O.Salazar, B.Sagredo, E.Jedlicki, D.Söll, I.Weygand-Durasevic, and O.Orellana (1994).
Thiobacillus ferrooxidans tyrosyl-tRNA synthetase functions in vivo in Escherichia coli.
  J Bacteriol, 176, 4409-4415.  
8441673 C.A.Menguito, M.J.Keherly, C.Tang, J.Papaconstantinou, and P.H.Weigel (1993).
Molecular cloning, sequence, structural analysis and expression of the histidyl-tRNA synthetase gene from Streptococcus equisimilis.
  Nucleic Acids Res, 21, 615-620.  
  7691478 D.D.Buechter, and P.Schimmel (1993).
Aminoacylation of RNA minihelices: implications for tRNA synthetase structural design and evolution.
  Crit Rev Biochem Mol Biol, 28, 309-322.  
  7505222 E.Schwob, and D.Söll (1993).
Selection of a 'minimal' glutaminyl-tRNA synthetase and the evolution of class I synthetases.
  EMBO J, 12, 5201-5208.  
  8298469 L.Ribas de Pouplana, D.D.Buechter, M.W.Davis, and P.Schimmel (1993).
Idiographic representation of conserved domain of a class II tRNA synthetase of unknown structure.
  Protein Sci, 2, 2259-2262.  
7692438 P.Schimmel, R.Giegé, D.Moras, and S.Yokoyama (1993).
An operational RNA code for amino acids and possible relationship to genetic code.
  Proc Natl Acad Sci U S A, 90, 8763-8768.  
8464727 S.L.Moodie, and J.M.Thornton (1993).
A study into the effects of protein binding on nucleotide conformation.
  Nucleic Acids Res, 21, 1369-1380.  
1375910 C.Francklyn, K.Musier-Forsyth, and P.Schimmel (1992).
Small RNA helices as substrates for aminoacylation and their relationship to charging of transfer RNAs.
  Eur J Biochem, 206, 315-321.  
1641329 C.Landès, A.Hénaut, and J.L.Risler (1992).
A comparison of several similarity indices used in the classification of protein sequences: a multivariate analysis.
  Nucleic Acids Res, 20, 3631-3637.  
1544480 D.Madern, J.Anselme, and M.Härtlein (1992).
Asparaginyl-tRNA synthetase from the Escherichia coli temperature-sensitive strain HO202. A proline replacement in motif 2 is responsible for a large increase in Km for asparagine and ATP.
  FEBS Lett, 299, 85-89.  
1585461 D.Moras (1992).
Structural and functional relationships between aminoacyl-tRNA synthetases.
  Trends Biochem Sci, 17, 159-164.  
1549581 E.Katchalski-Katzir, I.Shariv, M.Eisenstein, A.A.Friesem, C.Aflalo, and I.A.Vakser (1992).
Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques.
  Proc Natl Acad Sci U S A, 89, 2195-2199.  
  1406490 H.Jakubowski, and E.Goldman (1992).
Editing of errors in selection of amino acids for protein synthesis.
  Microbiol Rev, 56, 412-429.  
  1304356 J.J.Burbaum, and P.Schimmel (1992).
Amino acid binding by the class I aminoacyl-tRNA synthetases: role for a conserved proline in the signature sequence.
  Protein Sci, 1, 575-581.  
16617497 J.M.Sherman, M.J.Rogers, and D.Söll (1992).
Competition of aminoacyl-tRNA synthetases for tRNA ensures the accuracy of aminoacylation.
  Nucleic Acids Res, 20, 1547-1552.  
1521534 L.Reshetnikova, M.Chernaya, V.Ankilova, O.Lavrik, M.Delarue, J.C.Thierry, D.Moras, and M.Safro (1992).
Three-dimensional structure of phenylalanyl-transfer RNA synthetase from Thermus thermophilus HB8 at 0.6-nm resolution.
  Eur J Biochem, 208, 411-417.  
1508711 R.Kreutzer, V.Kruft, E.V.Bobkova, O.I.Lavrik, and M.Sprinzl (1992).
Structure of the phenylalanyl-tRNA synthetase genes from Thermus thermophilus HB8 and their expression in Escherichia coli.
  Nucleic Acids Res, 20, 4173-4178.  
  1735721 T.M.Henkin, B.L.Glass, and F.J.Grundy (1992).
Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes.
  J Bacteriol, 174, 1299-1306.  
  1531084 U.Kämper, U.Kück, A.D.Cherniack, and A.M.Lambowitz (1992).
The mitochondrial tyrosyl-tRNA synthetase of Podospora anserina is a bifunctional enzyme active in protein synthesis and RNA splicing.
  Mol Cell Biol, 12, 499-511.  
  1756734 C.Cerini, P.Kerjan, M.Astier, D.Gratecos, M.Mirande, and M.Sémériva (1991).
A component of the multisynthetase complex is a multifunctional aminoacyl-tRNA synthetase.
  EMBO J, 10, 4267-4277.  
1763051 C.P.Lee, and U.L.RajBhandary (1991).
Mutants of Escherichia coli initiator tRNA that suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts.
  Proc Natl Acad Sci U S A, 88, 11378-11382.  
2014166 G.Eriani, G.Dirheimer, and J.Gangloff (1991).
Cysteinyl-tRNA synthetase: determination of the last E. coli aminoacyl-tRNA synthetase primary structure.
  Nucleic Acids Res, 19, 265-269.  
1721699 H.Himeno, T.Hasegawa, H.Asahara, K.Tamura, and M.Shimizu (1991).
Identity determinants of E. coli tryptophan tRNA.
  Nucleic Acids Res, 19, 6379-6382.  
2011598 J.J.Perona, M.A.Rould, T.A.Steitz, J.L.Risler, C.Zelwer, and S.Brunie (1991).
Structural similarities in glutaminyl- and methionyl-tRNA synthetases suggest a common overall orientation of tRNA binding.
  Proc Natl Acad Sci U S A, 88, 2903-2907.  
1852601 S.Cusack, M.Härtlein, and R.Leberman (1991).
Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases.
  Nucleic Acids Res, 19, 3489-3498.  
1960737 W.A.Sokalski, M.Shibata, D.Barak, and R.Rein (1991).
Catalytic activity of aminoacyl tRNA synthetases and its implications for the origin of life. I. Aminoacyl adenylate formation in tyrosyl tRNA synthetase.
  J Mol Evol, 33, 405-411.  
1992490 Y.M.Hou, K.Shiba, C.Mottes, and P.Schimmel (1991).
Sequence determination and modeling of structural motifs for the smallest monomeric aminoacyl-tRNA synthetase.
  Proc Natl Acad Sci U S A, 88, 976-980.  
2143700 A.D.Cherniack, G.Garriga, J.D.Kittle, R.A.Akins, and A.M.Lambowitz (1990).
Function of Neurospora mitochondrial tyrosyl-tRNA synthetase in RNA splicing requires an idiosyncratic domain not found in other synthetases.
  Cell, 62, 745-755.  
  2253707 D.Söll (1990).
The accuracy of aminoacylation--ensuring the fidelity of the genetic code.
  Experientia, 46, 1089-1096.  
2183195 G.Eriani, G.Dirheimer, and J.Gangloff (1990).
Structure-function relationship of arginyl-tRNA synthetase from Escherichia coli: isolation and characterization of the argS mutation MA5002.
  Nucleic Acids Res, 18, 1475-1479.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.