spacer
spacer

PDBsum entry 2qcs

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Transferase/transferase inhibitor PDB id
2qcs

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
338 a.a. *
291 a.a. *
Ligands
SO4 ×6
ACT
ANP
TAM
GOL ×3
Metals
_MN ×2
Waters ×289
* Residue conservation analysis
PDB id:
2qcs
Name: Transferase/transferase inhibitor
Title: A complex structure between the catalytic and regulatory subunit of protein kinase a that represents the inhibited state
Structure: Camp-dependent protein kinase, alpha-catalytic subunit. Chain: a. Fragment: catalytic subunit. Synonym: pka c-alpha. Engineered: yes. Camp-dependent protein kinase type i-alpha regulatory subunit. Chain: b. Fragment: regulatory subunit.
Source: Mus musculus. House mouse. Organism_taxid: 10090. Gene: prkaca, pkaca. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693. Bos taurus. Cattle. Organism_taxid: 9913.
Resolution:
2.20Å     R-factor:   0.194     R-free:   0.225
Authors: C.Kim,C.Y.Cheng,A.S.Saldanha,S.S.Taylor
Key ref:
C.Kim et al. (2007). PKA-I Holoenzyme Structure Reveals a Mechanism for cAMP-Dependent Activation. Cell, 130, 1032-1043. PubMed id: 17889648 DOI: 10.1016/j.cell.2007.07.018
Date:
19-Jun-07     Release date:   06-Nov-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P05132  (KAPCA_MOUSE) -  cAMP-dependent protein kinase catalytic subunit alpha from Mus musculus
Seq:
Struc:
351 a.a.
338 a.a.*
Protein chain
Pfam   ArchSchema ?
P00514  (KAP0_BOVIN) -  cAMP-dependent protein kinase type I-alpha regulatory subunit from Bos taurus
Seq:
Struc:
380 a.a.
291 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: Chain A: E.C.2.7.11.11  - cAMP-dependent protein kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. L-seryl-[protein] + ATP = O-phospho-L-seryl-[protein] + ADP + H+
2. L-threonyl-[protein] + ATP = O-phospho-L-threonyl-[protein] + ADP + H+
L-seryl-[protein]
+ ATP
= O-phospho-L-seryl-[protein]
Bound ligand (Het Group name = ANP)
matches with 81.25% similarity
+ ADP
+ H(+)
L-threonyl-[protein]
+ ATP
= O-phospho-L-threonyl-[protein]
Bound ligand (Het Group name = ANP)
matches with 81.25% similarity
+ ADP
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/j.cell.2007.07.018 Cell 130:1032-1043 (2007)
PubMed id: 17889648  
 
 
PKA-I Holoenzyme Structure Reveals a Mechanism for cAMP-Dependent Activation.
C.Kim, C.Y.Cheng, S.A.Saldanha, S.S.Taylor.
 
  ABSTRACT  
 
Protein kinase A (PKA) holoenzyme is one of the major receptors for cyclic adenosine monophosphate (cAMP), where an extracellular stimulus is translated into a signaling response. We report here the structure of a complex between the PKA catalytic subunit and a mutant RI regulatory subunit, RIalpha(91-379:R333K), containing both cAMP-binding domains. Upon binding to the catalytic subunit, RI undergoes a dramatic conformational change in which the two cAMP-binding domains uncouple and wrap around the large lobe of the catalytic subunit. This large conformational reorganization reveals the concerted mechanism required to bind and inhibit the catalytic subunit. The structure also reveals a holoenzyme-specific salt bridge between two conserved residues, Glu261 and Arg366, that tethers the two adenine capping residues far from their cAMP-binding sites. Mutagenesis of these residues demonstrates their importance for PKA activation. Our structural insights, combined with the mutagenesis results, provide a molecular mechanism for the ordered and cooperative activation of PKA by cAMP.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Overview of the PKA RIα(91–379):C Holoenzyme Complex
Top: domain organization of the catalytic and regulatory subunits. The two red spheres indicate the phosphorylation sites Thr197^C and Ser338^C in the catalytic subunit.
(A and C) (A) shows a view of the inhibitor sequence of the regulatory subunit bound to the active-site cleft of the catalytic subunit. Boxed regions indicate interaction sites between the R and C subunits at the active site (site 1, left) and the αG helix (site 2, right). (C) shows a 180° rotation of the view in (A). Boxed regions indicate the interaction site at the activation loop (site 3, top) and αH-αI loop (site 4, bottom). The regulatory subunit is shown as a cartoon representation with domain A in dark teal, domain B in cyan, the phosphate-binding cassette (PBC) in yellow, and the αB/C helix and inhibitor site in dark red.
(B and D) Surface representation of both subunits in the same view as in (A) and (C), respectively. The catalytic subunit is bound to AMP-PNP (black sticks) and Mn^2+ (blue spheres) with the small lobe (light tan) and the large lobe (dark tan) in surface rendering.
Figure 6.
Figure 6. Binding of the Catalytic Subunit Reorganizes the N3A Motif and the Phosphate-Binding Cassette in the Regulatory Subunit to Create a Contiguous Hydrophobic Interface
(A) Comparison of the helical regions in domain A between the cAMP (left) and catalytic subunit-bound (right) conformations. Movement of the helical regions is mediated by hydrophobic rearrangement of the hinge residues in the PBC (Ile203^R and Leu204^R), αB helix (Tyr229^R), and 3[10] loop (Leu135^R).
(B) Comparison of domain B in the cAMP and catalytic subunit-bound conformations, highlighting the C-terminal tail (red). In domain B, the helical rearrangements are similar to domain A where residues in the PBC (Leu327^R and Leu328^R), αB helix (Phe353^R), and 3[10] loop (Ile253^R and Leu254^R) come together.
(C) Comparison between domains A and B in the holoenzyme conformation. In domain A, the N3A motif (residues 123–150) and PBC come together and serve as a docking surface for the P+1 loop (black) and the αG helix (dark tan) of the catalytic subunit. In domain B, a similar hydrophobic interface is formed between the N3A motif (residues 245–367) and PBC; however, the C-terminal tail (αB, αC′, and αC″ helices) lies on top of the hydrophobic interface.
 
  The above figures are reprinted by permission from Cell Press: Cell (2007, 130, 1032-1043) copyright 2007.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
23143333 G.S.Lee, N.Subramanian, A.I.Kim, I.Aksentijevich, R.Goldbach-Mansky, D.B.Sacks, R.N.Germain, D.L.Kastner, and J.J.Chae (2012).
The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP.
  Nature, 492, 123-127.  
22992589 S.S.Taylor, R.Ilouz, P.Zhang, and A.P.Kornev (2012).
Assembly of allosteric macromolecular switches: lessons from PKA.
  Nat Rev Mol Cell Biol, 13, 646-658.  
  21643460 J.H.Lee, S.Li, T.Liu, S.Hsu, C.Kim, V.L.Woods, and D.E.Casteel (2011).
The amino terminus of cGMP-dependent protein kinase Iβ increases the dynamics of the protein's cGMP-binding pockets.
  Int J Mass Spectrom, 302, 44-52.  
20971646 S.S.Taylor, and A.P.Kornev (2011).
Protein kinases: evolution of dynamic regulatory proteins.
  Trends Biochem Sci, 36, 65-77.  
21215369 T.A.Leonard, B.Różycki, L.F.Saidi, G.Hummer, and J.H.Hurley (2011).
Crystal structure and allosteric activation of protein kinase C βII.
  Cell, 144, 55-66.
PDB code: 3pfq
21513371 W.Koh, and K.T.Blackwell (2011).
An accelerated algorithm for discrete stochastic simulation of reaction-diffusion systems using gradient-based diffusion and tau-leaping.
  J Chem Phys, 134, 154103.  
20007971 C.Hundsrucker, P.Skroblin, F.Christian, H.M.Zenn, V.Popara, M.Joshi, J.Eichhorst, B.Wiesner, F.W.Herberg, B.Reif, W.Rosenthal, and E.Klussmann (2010).
Glycogen synthase kinase 3beta interaction protein functions as an A-kinase anchoring protein.
  J Biol Chem, 285, 5507-5521.  
20159461 G.N.Sarma, F.S.Kinderman, C.Kim, S.von Daake, L.Chen, B.C.Wang, and S.S.Taylor (2010).
Structure of D-AKAP2:PKA RI complex: insights into AKAP specificity and selectivity.
  Structure, 18, 155-166.
PDB codes: 3im3 3im4
20154666 J.A.Zorn, and J.A.Wells (2010).
Turning enzymes ON with small molecules.
  Nat Chem Biol, 6, 179-188.  
21070946 J.Rinaldi, J.Wu, J.Yang, C.Y.Ralston, B.Sankaran, S.Moreno, and S.S.Taylor (2010).
Structure of yeast regulatory subunit: a glimpse into the evolution of PKA signaling.
  Structure, 18, 1471-1482.
PDB code: 3of1
20890288 L.R.Masterson, C.Cheng, T.Yu, M.Tonelli, A.Kornev, S.S.Taylor, and G.Veglia (2010).
Dynamics connect substrate recognition to catalysis in protein kinase A.
  Nat Chem Biol, 6, 821-828.
PDB code: 3o7l
20367611 O.N.Rogacheva, A.V.Popov, E.V.Savvateeva-Popova, V.E.Stefanov, and B.F.Shchegolev (2010).
Thermodynamic analysis of protein kinase A Ialpha activation.
  Biochemistry (Mosc), 75, 233-241.  
20697156 S.D.Molyneux, M.A.Di Grappa, A.G.Beristain, T.D.McKee, D.H.Wai, J.Paderova, M.Kashyap, P.Hu, T.Maiuri, S.R.Narala, V.Stambolic, J.Squire, J.Penninger, O.Sanchez, T.J.Triche, G.A.Wood, L.S.Kirschner, and R.Khokha (2010).
Prkar1a is an osteosarcoma tumor suppressor that defines a molecular subclass in mice.
  J Clin Invest, 120, 3310-3325.  
20589829 S.Naviglio, D.Di Gesto, F.Illiano, E.Chiosi, A.Giordano, G.Illiano, and A.Spina (2010).
Leptin potentiates antiproliferative action of cAMP elevation via protein kinase A down-regulation in breast cancer cells.
  J Cell Physiol, 225, 801-809.  
20512974 T.J.Sjoberg, A.P.Kornev, and S.S.Taylor (2010).
Dissecting the cAMP-inducible allosteric switch in protein kinase A RIalpha.
  Protein Sci, 19, 1213-1221.
PDB code: 3iia
20048145 X.Gao, D.Chaturvedi, and T.B.Patel (2010).
p90 ribosomal S6 kinase 1 (RSK1) and the catalytic subunit of protein kinase A (PKA) compete for binding the pseudosubstrate region of PKAR1alpha: role in the regulation of PKA and RSK1 activities.
  J Biol Chem, 285, 6970-6979.  
19234474 B.Q.Vuong, M.Lee, S.Kabir, C.Irimia, S.Macchiarulo, G.S.McKnight, and J.Chaudhuri (2009).
Specific recruitment of protein kinase A to the immunoglobulin locus regulates class-switch recombination.
  Nat Immunol, 10, 420-426.  
19837668 C.Y.Cheng, J.Yang, S.S.Taylor, and D.K.Blumenthal (2009).
Sensing domain dynamics in protein kinase A-I{alpha} complexes by solution X-ray scattering.
  J Biol Chem, 284, 35916-35925.  
19819219 D.W.Pettigrew (2009).
Oligomeric interactions provide alternatives to direct steric modes of control of sugar kinase/actin/hsp70 superfamily functions by heterotropic allosteric effectors: inhibition of E. coli glycerol kinase.
  Arch Biochem Biophys, 492, 29-39.  
19319965 G.K.Carnegie, C.K.Means, and J.D.Scott (2009).
A-kinase anchoring proteins: from protein complexes to physiology and disease.
  IUBMB Life, 61, 394-406.  
19122195 J.Yang, E.J.Kennedy, J.Wu, M.S.Deal, J.Pennypacker, G.Ghosh, and S.S.Taylor (2009).
Contribution of Non-catalytic Core Residues to Activity and Regulation in Protein Kinase A.
  J Biol Chem, 284, 6241-6248.
PDB code: 2qur
19369251 M.W.Pinkse, D.T.Rijkers, W.R.Dostmann, and A.J.Heck (2009).
Mode of Action of cGMP-dependent Protein Kinase-specific Inhibitors Probed by Photoaffinity Cross-linking Mass Spectrometry.
  J Biol Chem, 284, 16354-16368.  
19371331 M.Zaccolo (2009).
cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies.
  Br J Pharmacol, 158, 50-60.  
19530248 R.A.Romano, N.Kannan, A.P.Kornev, C.J.Allison, and S.S.Taylor (2009).
A chimeric mechanism for polyvalent trans-phosphorylation of PKA by PDK1.
  Protein Sci, 18, 1486-1497.  
19403523 R.Das, S.Chowdhury, M.T.Mazhab-Jafari, S.Sildas, R.Selvaratnam, and G.Melacini (2009).
Dynamically driven ligand selectivity in cyclic nucleotide binding domains.
  J Biol Chem, 284, 23682-23696.  
19364808 S.J.Deminoff, V.Ramachandran, and P.K.Herman (2009).
Distal recognition sites in substrates are required for efficient phosphorylation by the cAMP-dependent protein kinase.
  Genetics, 182, 529-539.  
19063708 S.Naviglio, M.Caraglia, A.Abbruzzese, E.Chiosi, D.Di Gesto, M.Marra, M.Romano, A.Sorrentino, L.Sorvillo, A.Spina, and G.Illiano (2009).
Protein kinase A as a biological target in cancer therapy.
  Expert Opin Ther Targets, 13, 83-92.  
18404204 A.P.Kornev, S.S.Taylor, and L.F.Ten Eyck (2008).
A generalized allosteric mechanism for cis-regulated cyclic nucleotide binding domains.
  PLoS Comput Biol, 4, e1000056.  
18787129 A.P.Kornev, S.S.Taylor, and L.F.Ten Eyck (2008).
A helix scaffold for the assembly of active protein kinases.
  Proc Natl Acad Sci U S A, 105, 14377-14382.  
18411261 R.Das, M.T.Mazhab-Jafari, S.Chowdhury, S.SilDas, R.Selvaratnam, and G.Melacini (2008).
Entropy-driven cAMP-dependent allosteric control of inhibitory interactions in exchange proteins directly activated by cAMP.
  J Biol Chem, 283, 19691-19703.  
18491255 S.A.Boikos, A.Horvath, S.Heyerdahl, E.Stein, A.Robinson-White, I.Bossis, J.Bertherat, J.A.Carney, and C.A.Stratakis (2008).
Phosphodiesterase 11A expression in the adrenal cortex, primary pigmented nodular adrenocortical disease, and other corticotropin-independent lesions.
  Horm Metab Res, 40, 347-353.  
17996741 S.S.Taylor, C.Kim, C.Y.Cheng, S.H.Brown, J.Wu, and N.Kannan (2008).
Signaling through cAMP and cAMP-dependent protein kinase: diverse strategies for drug design.
  Biochim Biophys Acta, 1784, 16-26.  
17932298 J.Wu, S.H.Brown, S.von Daake, and S.S.Taylor (2007).
PKA type IIalpha holoenzyme reveals a combinatorial strategy for isoform diversity.
  Science, 318, 274-279.
PDB code: 2qvs
18076763 N.Kannan, J.Wu, G.S.Anand, S.Yooseph, A.F.Neuwald, C.J.Venter, and S.S.Taylor (2007).
Evolution of allostery in the cyclic nucleotide binding module.
  Genome Biol, 8, R264.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer