|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
229 a.a.
|
 |
|
|
|
|
|
|
|
1119 a.a.
|
 |
|
|
|
|
|
|
|
1314 a.a.
|
 |
|
|
|
|
|
|
|
95 a.a.
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transferase/DNA/RNA
|
 |
|
Title:
|
 |
Crystal structure of the t. Thermophilus rnap polymerase elongation complex with the ntp substrate analog and antibiotic streptolydigin
|
|
Structure:
|
 |
DNA (5'- d(p Cp Cp Cp Tp Gp Tp Cp Tp Gp Gp Cp Gp Tp Tp Cp Gp Cp Gp Cp Gp Cp Cp G)-3'). Chain: g, x. Engineered: yes. Other_details: DNA template strand. RNA (5'- r(p Gp Ap Gp Up Cp Up Gp Cp Gp Gp Cp Gp Cp Gp Cp G)-3'). Chain: h, y.
|
|
Source:
|
 |
Synthetic: yes. Thermus thermophilus. Organism_taxid: 300852. Strain: hb8. Strain: hb8
|
|
Resolution:
|
 |
|
3.00Å
|
R-factor:
|
0.234
|
R-free:
|
0.266
|
|
|
Authors:
|
 |
D.G.Vassylyev,M.N.Vassylyeva,I.Artsimovitch,R.Landick
|
Key ref:
|
 |
D.G.Vassylyev
et al.
(2007).
Structural basis for substrate loading in bacterial RNA polymerase.
Nature,
448,
163-168.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
28-Apr-07
|
Release date:
|
17-Jul-07
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
Q5SHR6
(RPOA_THET8) -
DNA-directed RNA polymerase subunit alpha from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
315 a.a.
229 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
Q8RQE9
(RPOB_THET8) -
DNA-directed RNA polymerase subunit beta from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
1119 a.a.
1119 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chains A, B, C, D, E, K, L, M, N, O:
E.C.2.7.7.6
- DNA-directed Rna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
RNA(n)
|
+
|
ribonucleoside 5'-triphosphate
|
=
|
RNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Nature
448:163-168
(2007)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural basis for substrate loading in bacterial RNA polymerase.
|
|
D.G.Vassylyev,
M.N.Vassylyeva,
J.Zhang,
M.Palangat,
I.Artsimovitch,
R.Landick.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The mechanism of substrate loading in multisubunit RNA polymerase is crucial for
understanding the general principles of transcription yet remains hotly debated.
Here we report the 3.0-A resolution structures of the Thermus thermophilus
elongation complex (EC) with a non-hydrolysable substrate analogue,
adenosine-5'-[(alpha,beta)-methyleno]-triphosphate (AMPcPP), and with AMPcPP
plus the inhibitor streptolydigin. In the EC/AMPcPP structure, the substrate
binds to the active ('insertion') site closed through refolding of the trigger
loop (TL) into two alpha-helices. In contrast, the EC/AMPcPP/streptolydigin
structure reveals an inactive ('preinsertion') substrate configuration
stabilized by streptolydigin-induced displacement of the TL. Our structural and
biochemical data suggest that refolding of the TL is vital for catalysis and
have three main implications. First, despite differences in the details, the
two-step preinsertion/insertion mechanism of substrate loading may be universal
for all RNA polymerases. Second, freezing of the preinsertion state is an
attractive target for the design of novel antibiotics. Last, the TL emerges as a
prominent target whose refolding can be modulated by regulatory factors.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1: Structures of the substrate complexes. The same
colour scheme is used in all figures. The DNA template,
non-template and RNA strands are in red, blue and yellow,
respectively. The BH, the TH and the rest of the RNAP molecule
are in magenta, cyan and grey, respectively. The insertion and
preinsertion NTP analogues and Stl are designated by green,
orange and black, respectively. The catalytic Mg^2+ ions (MgI
and MgII) are shown as magenta spheres. a, b, Overall views of
the ttEC/AMPcPP (a) and EC/AMPcPP/Stl (b) complexes. CC, coiled
coil. c, d, Superposition of the NTPs (c, d) and TH (d) in the
insertion (green, NTP; cyan, TH) and preinsertion (orange, NTP;
blue, TH) complexes.
|
 |
Figure 5.
Figure 5: Nucleotide addition cycle. The substrate loading
pathway in bacterial RNAP.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2007,
448,
163-168)
copyright 2007.
|
|
| |
Figures were
selected
by the author.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
S.Sainsbury,
J.Niesser,
and
P.Cramer
(2013).
Structure and function of the initially transcribing RNA polymerase II-TFIIB complex.
|
| |
Nature,
493,
437-440.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.C.Cheung,
and
P.Cramer
(2011).
Structural basis of RNA polymerase II backtracking, arrest and reactivation.
|
| |
Nature,
471,
249-253.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Swapna,
A.Chakraborty,
V.Kumari,
R.Sen,
and
V.Nagaraja
(2011).
Mutations in β' subunit of Escherichia coli RNA polymerase perturb the activator polymerase functional interaction required for promoter clearance.
|
| |
Mol Microbiol,
80,
1169-1185.
|
 |
|
|
|
|
 |
M.L.Gleghorn,
E.K.Davydova,
R.Basu,
L.B.Rothman-Denes,
and
K.S.Murakami
(2011).
X-ray crystal structures elucidate the nucleotidyl transfer reaction of transcript initiation using two nucleotides.
|
| |
Proc Natl Acad Sci U S A,
108,
3566-3571.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.R.Kennedy,
and
D.A.Erie
(2011).
Templated nucleoside triphosphate binding to a noncatalytic site on RNA polymerase regulates transcription.
|
| |
Proc Natl Acad Sci U S A,
108,
6079-6084.
|
 |
|
|
|
|
 |
T.Tsukazaki,
H.Mori,
Y.Echizen,
R.Ishitani,
S.Fukai,
T.Tanaka,
A.Perederina,
D.G.Vassylyev,
T.Kohno,
A.D.Maturana,
K.Ito,
and
O.Nureki
(2011).
Structure and function of a membrane component SecDF that enhances protein export.
|
| |
Nature,
474,
235-238.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Pan,
Y.Xiong,
and
T.A.Steitz
(2010).
How the CCA-adding enzyme selects adenine over cytosine at position 76 of tRNA.
|
| |
Science,
330,
937-940.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.D.Kaplan
(2010).
The architecture of RNA polymerase fidelity.
|
| |
BMC Biol,
8,
85.
|
 |
|
|
|
|
 |
D.Pupov,
N.Miropolskaya,
A.Sevostyanova,
I.Bass,
I.Artsimovitch,
and
A.Kulbachinskiy
(2010).
Multiple roles of the RNA polymerase {beta}' SW2 region in transcription initiation, promoter escape, and RNA elongation.
|
| |
Nucleic Acids Res,
38,
5784-5796.
|
 |
|
|
|
|
 |
G.Ruprich-Robert,
and
P.Thuriaux
(2010).
Non-canonical DNA transcription enzymes and the conservation of two-barrel RNA polymerases.
|
| |
Nucleic Acids Res,
38,
4559-4569.
|
 |
|
|
|
|
 |
J.C.Carlson,
J.L.Fortman,
Y.Anzai,
S.Li,
D.A.Burr,
and
D.H.Sherman
(2010).
Identification of the tirandamycin biosynthetic gene cluster from Streptomyces sp. 307-9.
|
| |
Chembiochem,
11,
564-572.
|
 |
|
|
|
|
 |
N.Opalka,
J.Brown,
W.J.Lane,
K.A.Twist,
R.Landick,
F.J.Asturias,
and
S.A.Darst
(2010).
Complete structural model of Escherichia coli RNA polymerase from a hybrid approach.
|
| |
PLoS Biol,
8,
0.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Cramer
(2010).
Towards molecular systems biology of gene transcription and regulation.
|
| |
Biol Chem,
391,
731-735.
|
 |
|
|
|
|
 |
P.P.Hein,
and
R.Landick
(2010).
The bridge helix coordinates movements of modules in RNA polymerase.
|
| |
BMC Biol,
8,
141.
|
 |
|
|
|
|
 |
R.Wurm,
T.Neusser,
and
R.Wagner
(2010).
6S RNA-dependent inhibition of RNA polymerase is released by RNA-dependent synthesis of small de novo products.
|
| |
Biol Chem,
391,
187-196.
|
 |
|
|
|
|
 |
S.Tagami,
S.Sekine,
T.Kumarevel,
N.Hino,
Y.Murayama,
S.Kamegamori,
M.Yamamoto,
K.Sakamoto,
and
S.Yokoyama
(2010).
Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein.
|
| |
Nature,
468,
978-982.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.J.Lane,
and
S.A.Darst
(2010).
Molecular evolution of multisubunit RNA polymerases: structural analysis.
|
| |
J Mol Biol,
395,
686-704.
|
 |
|
|
|
|
 |
W.J.Lane,
and
S.A.Darst
(2010).
Molecular evolution of multisubunit RNA polymerases: sequence analysis.
|
| |
J Mol Biol,
395,
671-685.
|
 |
|
|
|
|
 |
X.Huang,
D.Wang,
D.R.Weiss,
D.A.Bushnell,
R.D.Kornberg,
and
M.Levitt
(2010).
RNA polymerase II trigger loop residues stabilize and position the incoming nucleotide triphosphate in transcription.
|
| |
Proc Natl Acad Sci U S A,
107,
15745-15750.
|
 |
|
|
|
|
 |
Y.Yuzenkova,
A.Bochkareva,
V.R.Tadigotla,
M.Roghanian,
S.Zorov,
K.Severinov,
and
N.Zenkin
(2010).
Stepwise mechanism for transcription fidelity.
|
| |
BMC Biol,
8,
54.
|
 |
|
|
|
|
 |
Y.Yuzenkova,
and
N.Zenkin
(2010).
Central role of the RNA polymerase trigger loop in intrinsic RNA hydrolysis.
|
| |
Proc Natl Acad Sci U S A,
107,
10878-10883.
|
 |
|
|
|
|
 |
Z.Baharoglu,
R.Lestini,
S.Duigou,
and
B.Michel
(2010).
RNA polymerase mutations that facilitate replication progression in the rep uvrD recF mutant lacking two accessory replicative helicases.
|
| |
Mol Microbiol,
77,
324-336.
|
 |
|
|
|
|
 |
A.C.Rhee,
B.H.Somerlot,
N.Parimi,
and
J.M.Gott
(2009).
Distinct roles for sequences upstream of and downstream from Physarum editing sites.
|
| |
RNA,
15,
1753-1765.
|
 |
|
|
|
|
 |
B.P.Hudson,
J.Quispe,
S.Lara-González,
Y.Kim,
H.M.Berman,
E.Arnold,
R.H.Ebright,
and
C.L.Lawson
(2009).
Three-dimensional EM structure of an intact activator-dependent transcription initiation complex.
|
| |
Proc Natl Acad Sci U S A,
106,
19830-19835.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Nudler
(2009).
RNA polymerase active center: the molecular engine of transcription.
|
| |
Annu Rev Biochem,
78,
335-361.
|
 |
|
|
|
|
 |
F.Brueckner,
J.Ortiz,
and
P.Cramer
(2009).
A movie of the RNA polymerase nucleotide addition cycle.
|
| |
Curr Opin Struct Biol,
19,
294-299.
|
 |
|
|
|
|
 |
F.Brueckner,
K.J.Armache,
A.Cheung,
G.E.Damsma,
H.Kettenberger,
E.Lehmann,
J.Sydow,
and
P.Cramer
(2009).
Structure-function studies of the RNA polymerase II elongation complex.
|
| |
Acta Crystallogr D Biol Crystallogr,
65,
112-120.
|
 |
|
|
|
|
 |
G.A.Belogurov,
M.N.Vassylyeva,
A.Sevostyanova,
J.R.Appleman,
A.X.Xiang,
R.Lira,
S.E.Webber,
S.Klyuyev,
E.Nudler,
I.Artsimovitch,
and
D.G.Vassylyev
(2009).
Transcription inactivation through local refolding of the RNA polymerase structure.
|
| |
Nature,
457,
332-335.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Spåhr,
G.Calero,
D.A.Bushnell,
and
R.D.Kornberg
(2009).
Schizosacharomyces pombe RNA polymerase II at 3.6-A resolution.
|
| |
Proc Natl Acad Sci U S A,
106,
9185-9190.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.F.Sydow,
F.Brueckner,
A.C.Cheung,
G.E.Damsma,
S.Dengl,
E.Lehmann,
D.Vassylyev,
and
P.Cramer
(2009).
Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA.
|
| |
Mol Cell,
34,
710-721.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.L.Kireeva,
and
M.Kashlev
(2009).
Mechanism of sequence-specific pausing of bacterial RNA polymerase.
|
| |
Proc Natl Acad Sci U S A,
106,
8900-8905.
|
 |
|
|
|
|
 |
M.Voliotis,
N.Cohen,
C.Molina-París,
and
T.B.Liverpool
(2009).
Backtracking and proofreading in DNA transcription.
|
| |
Phys Rev Lett,
102,
258101.
|
 |
|
|
|
|
 |
M.X.Ho,
B.P.Hudson,
K.Das,
E.Arnold,
and
R.H.Ebright
(2009).
Structures of RNA polymerase-antibiotic complexes.
|
| |
Curr Opin Struct Biol,
19,
715-723.
|
 |
|
|
|
|
 |
N.Miropolskaya,
I.Artsimovitch,
S.Klimasauskas,
V.Nikiforov,
and
A.Kulbachinskiy
(2009).
Allosteric control of catalysis by the F loop of RNA polymerase.
|
| |
Proc Natl Acad Sci U S A,
106,
18942-18947.
|
 |
|
|
|
|
 |
R.Landick
(2009).
Transcriptional pausing without backtracking.
|
| |
Proc Natl Acad Sci U S A,
106,
8797-8798.
|
 |
|
|
|
|
 |
R.Landick
(2009).
Functional divergence in the growing family of RNA polymerases.
|
| |
Structure,
17,
323-325.
|
 |
|
|
|
|
 |
S.T.Rutherford,
C.L.Villers,
J.H.Lee,
W.Ross,
and
R.L.Gourse
(2009).
Allosteric control of Escherichia coli rRNA promoter complexes by DksA.
|
| |
Genes Dev,
23,
236-248.
|
 |
|
|
|
|
 |
A.Dimitri,
A.K.Goodenough,
F.P.Guengerich,
S.Broyde,
and
D.A.Scicchitano
(2008).
Transcription processing at 1,N2-ethenoguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase.
|
| |
J Mol Biol,
375,
353-366.
|
 |
|
|
|
|
 |
A.Hirata,
B.J.Klein,
and
K.S.Murakami
(2008).
The X-ray crystal structure of RNA polymerase from Archaea.
|
| |
Nature,
451,
851-854.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.D.Kaplan,
K.M.Larsson,
and
R.D.Kornberg
(2008).
The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin.
|
| |
Mol Cell,
30,
547-556.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.D.Kaplan,
and
R.D.Kornberg
(2008).
A bridge to transcription by RNA polymerase.
|
| |
J Biol,
7,
39.
|
 |
|
|
|
|
 |
C.E.Vrentas,
T.Gaal,
M.B.Berkmen,
S.T.Rutherford,
S.P.Haugen,
D.G.Vassylyev,
W.Ross,
and
R.L.Gourse
(2008).
Still looking for the magic spot: the crystallographically defined binding site for ppGpp on RNA polymerase is unlikely to be responsible for rRNA transcription regulation.
|
| |
J Mol Biol,
377,
551-564.
|
 |
|
|
|
|
 |
D.Dutta,
J.Chalissery,
and
R.Sen
(2008).
Transcription termination factor rho prefers catalytically active elongation complexes for releasing RNA.
|
| |
J Biol Chem,
283,
20243-20251.
|
 |
|
|
|
|
 |
F.Brueckner,
and
P.Cramer
(2008).
Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation.
|
| |
Nat Struct Mol Biol,
15,
811-818.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Werner
(2008).
Structural evolution of multisubunit RNA polymerases.
|
| |
Trends Microbiol,
16,
247-250.
|
 |
|
|
|
|
 |
J.W.Roberts,
S.Shankar,
and
J.J.Filter
(2008).
RNA polymerase elongation factors.
|
| |
Annu Rev Microbiol,
62,
211-233.
|
 |
|
|
|
|
 |
M.H.Larson,
W.J.Greenleaf,
R.Landick,
and
S.M.Block
(2008).
Applied force reveals mechanistic and energetic details of transcription termination.
|
| |
Cell,
132,
971-982.
|
 |
|
|
|
|
 |
M.L.Kireeva,
Y.A.Nedialkov,
G.H.Cremona,
Y.A.Purtov,
L.Lubkowska,
F.Malagon,
Z.F.Burton,
J.N.Strathern,
and
M.Kashlev
(2008).
Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation.
|
| |
Mol Cell,
30,
557-566.
|
 |
|
|
|
|
 |
P.Cramer,
K.J.Armache,
S.Baumli,
S.Benkert,
F.Brueckner,
C.Buchen,
G.E.Damsma,
S.Dengl,
S.R.Geiger,
A.J.Jasiak,
A.Jawhari,
S.Jennebach,
T.Kamenski,
H.Kettenberger,
C.D.Kuhn,
E.Lehmann,
K.Leike,
J.F.Sydow,
and
A.Vannini
(2008).
Structure of eukaryotic RNA polymerases.
|
| |
Annu Rev Biophys,
37,
337-352.
|
 |
|
|
|
|
 |
S.Borukhov,
and
E.Nudler
(2008).
RNA polymerase: the vehicle of transcription.
|
| |
Trends Microbiol,
16,
126-134.
|
 |
|
|
|
|
 |
T.F.Cheng,
X.Hu,
A.Gnatt,
and
P.J.Brooks
(2008).
Differential Blocking Effects of the Acetaldehyde-derived DNA Lesion N2-Ethyl-2'-deoxyguanosine on Transcription by Multisubunit and Single Subunit RNA Polymerases.
|
| |
J Biol Chem,
283,
27820-27828.
|
 |
|
|
|
|
 |
T.Tsukazaki,
H.Mori,
S.Fukai,
R.Ishitani,
T.Mori,
N.Dohmae,
A.Perederina,
Y.Sugita,
D.G.Vassylyev,
K.Ito,
and
O.Nureki
(2008).
Conformational transition of Sec machinery inferred from bacterial SecYE structures.
|
| |
Nature,
455,
988-991.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.Svetlov,
and
E.Nudler
(2008).
Jamming the ratchet of transcription.
|
| |
Nat Struct Mol Biol,
15,
777-779.
|
 |
|
|
|
|
 |
Y.X.Mejia,
H.Mao,
N.R.Forde,
and
C.Bustamante
(2008).
Thermal probing of E. coli RNA polymerase off-pathway mechanisms.
|
| |
J Mol Biol,
382,
628-637.
|
 |
|
|
|
|
 |
F.Werner
(2007).
Structure and function of archaeal RNA polymerases.
|
| |
Mol Microbiol,
65,
1395-1404.
|
 |
|
|
|
|
 |
I.Artsimovitch,
and
D.G.Vassylyev
(2007).
Merging the RNA and DNA worlds.
|
| |
Nat Struct Mol Biol,
14,
1122-1123.
|
 |
|
|
|
|
 |
I.Toulokhonov,
J.Zhang,
M.Palangat,
and
R.Landick
(2007).
A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing.
|
| |
Mol Cell,
27,
406-419.
|
 |
|
|
|
|
 |
P.Cramer
(2007).
Gene transcription: extending the message.
|
| |
Nature,
448,
142-143.
|
 |
|
|
|
|
 |
V.Epshtein,
C.J.Cardinale,
A.E.Ruckenstein,
S.Borukhov,
and
E.Nudler
(2007).
An allosteric path to transcription termination.
|
| |
Mol Cell,
28,
991.
|
 |
|
|
|
|
 |
V.Svetlov,
G.A.Belogurov,
E.Shabrova,
D.G.Vassylyev,
and
I.Artsimovitch
(2007).
Allosteric control of the RNA polymerase by the elongation factor RfaH.
|
| |
Nucleic Acids Res,
35,
5694-5705.
|
 |
|
|
|
|
 |
Y.Xiong,
and
Z.F.Burton
(2007).
A tunable ratchet driving human RNA polymerase II translocation adjusted by accurately templated nucleoside triphosphates loaded at downstream sites and by elongation factors.
|
| |
J Biol Chem,
282,
36582-36592.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
| |