|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transcription/cell cycle
|
 |
|
Title:
|
 |
Structure of the skp1-fbw7-cyclinedegn complex
|
|
Structure:
|
 |
S-phase kinase-associated protein 1a. Chain: a. Fragment: residues 1-147. Synonym: skp1. Cyclin a/cdk2-associated protein p19. P19a. P19skp1. RNA polymerase ii elongation factor-like protein. Organ of corti protein 2. Ocp-ii protein. Ocp-2. Transcription elongation factor b. Siii. Engineered: yes. F-box/wd repeat protein 7.
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Gene: skp1a, emc19, ocp2, skp1, tceb1l. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693. Gene: fbxw7, fbw7, fbx30, sel10. Synthetic: yes. Other_details: sequence occurs naturally in homo sapiens
|
|
Resolution:
|
 |
|
2.50Å
|
R-factor:
|
0.225
|
R-free:
|
0.251
|
|
|
Authors:
|
 |
B.Hao,S.Oehlmann,M.E.Sowa,J.W.Harper,N.P.Pavletich
|
Key ref:
|
 |
B.Hao
et al.
(2007).
Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases.
Mol Cell,
26,
131-143.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
14-Feb-07
|
Release date:
|
24-Apr-07
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Mol Cell
26:131-143
(2007)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases.
|
|
B.Hao,
S.Oehlmann,
M.E.Sowa,
J.W.Harper,
N.P.Pavletich.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The ubiquitin-mediated proteolysis of cyclin E plays a central role in
cell-cycle progression, and cyclin E accumulation is a common event in cancer.
Cyclin E degradation is triggered by multisite phosphorylation, which induces
binding to the SCF(Fbw7) ubiquitin ligase complex. Structures of the Skp1-Fbw7
complex bound to cyclin E peptides identify a doubly phosphorylated
pThr380/pSer384 cyclin E motif as an optimal, high-affinity degron and a singly
phosphorylated pThr62 motif as a low-affinity one. Biochemical data indicate
that the closely related yeast SCF(Cdc4) complex recognizes the multisite
phosphorylated Sic1 substrate similarly and identify three doubly phosphorylated
Sic1 degrons, each capable of high-affinity interactions with two Cdc4 phosphate
binding sites. A model that explains the role of multiple cyclin E/Sic1 degrons
is provided by the findings that Fbw7 and Cdc4 dimerize, that Fbw7 dimerization
enhances the turnover of a weakly associated cyclin E in vivo, and that Cdc4
dimerization increases the rate and processivity of Sic1 ubiquitination in vitro.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1. Structure of the Skp1-Fbw7-CycE^degC Complex
(A) Overall architecture of the complex, with the secondary
structure elements of Skp1, F box, and linker domains labeled.
Dotted lines indicate disordered regions. (B) CycE^degC
binds across the narrow face of the Fbw7 β-propeller structure.
The eight Fbw7 blades and the strands for one blade are labeled.
(C) Sequence alignment of the cyclin E peptides used in
crystallization with other SCF^Fbw7 substrates. Arrow indicates
the type II β turn, cylinder the left-handed polyproline II
helix, dotted lines disordered regions, and crosses the residues
of CycE^degC and CycE^degC that contact Fbw7. The substrate
residues that match the structure-based degron motif ( -X-
-
-
-pT/S-P-P-X-pS/T,
with representing
a hydrophobic residue and X any amino acid) are highlighted in
yellow.
|
 |
Figure 2.
Figure 2. Cyclin E-Fbw7 Contacts in the Skp1-Fbw7-CycE^degC
and Skp1-Fbw7-CycE^degN Complexes (A) Close-up view of the
Fbw7-CycE^degC interface showing interacting amino acids of Fbw7
(pink) and CycE^degC (light blue). Hydrogen bonds are shown as
white dotted lines. The Fbw7 blade strands that provide cyclin E
contacts are labeled. (B) Close-up view of the
Fbw7-CycE^degN interface. (C) Molecular surface
representation of the WD40 domain colored according to
conservation among Fbw7 13 orthologs and the Cdc4 and Pop1
homologs (Figure S1).
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Mol Cell
(2007,
26,
131-143)
copyright 2007.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
N.A.Lyons,
B.R.Fonslow,
J.K.Diedrich,
J.R.Yates,
and
D.O.Morgan
(2013).
Sequential primed kinases create a damage-responsive phosphodegron on Eco1.
|
| |
Nat Struct Mol Biol,
20,
194-201.
|
 |
|
|
|
|
 |
A.Werner,
A.Disanza,
N.Reifenberger,
G.Habeck,
J.Becker,
M.Calabrese,
H.Urlaub,
H.Lorenz,
B.Schulman,
G.Scita,
and
F.Melchior
(2012).
SCF(Fbxw5) mediates transient degradation of actin remodeller Eps8 to allow proper mitotic progression.
|
| |
Nat Cell Biol,
15,
179-188.
|
 |
|
|
|
|
 |
L.Busino,
S.E.Millman,
L.Scotto,
C.A.Kyratsous,
V.Basrur,
O.O'Connor,
A.Hoffmann,
K.S.Elenitoba-Johnson,
and
M.Pagano
(2012).
Fbxw7α- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma.
|
| |
Nat Cell Biol,
14,
375-385.
|
 |
|
|
|
|
 |
C.Xu,
and
J.Min
(2011).
Structure and function of WD40 domain proteins.
|
| |
Protein Cell,
2,
202-214.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.M.Duda,
D.C.Scott,
M.F.Calabrese,
E.S.Zimmerman,
N.Zheng,
and
B.A.Schulman
(2011).
Structural regulation of cullin-RING ubiquitin ligase complexes.
|
| |
Curr Opin Struct Biol,
21,
257-264.
|
 |
|
|
|
|
 |
M.Kõivomägi,
E.Valk,
R.Venta,
A.Iofik,
M.Lepiku,
E.R.Balog,
S.M.Rubin,
D.O.Morgan,
and
M.Loog
(2011).
Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase.
|
| |
Nature,
480,
128-131.
|
 |
|
|
|
|
 |
N.A.Lyons,
and
D.O.Morgan
(2011).
Cdk1-dependent destruction of eco1 prevents cohesion establishment after s phase.
|
| |
Mol Cell,
42,
378-389.
|
 |
|
|
|
|
 |
S.Marjan Varedi K,
P.J.Woolf,
and
X.N.Lin
(2011).
Minimum protein oscillator based on multisite phosphorylation∕dephosphorylation.
|
| |
IET Syst Biol,
5,
27.
|
 |
|
|
|
|
 |
Z.Hua,
and
R.D.Vierstra
(2011).
The cullin-RING ubiquitin-protein ligases.
|
| |
Annu Rev Plant Biol,
62,
299-334.
|
 |
|
|
|
|
 |
A.Brümmer,
C.Salazar,
V.Zinzalla,
L.Alberghina,
and
T.Höfer
(2010).
Mathematical modelling of DNA replication reveals a trade-off between coherence of origin activation and robustness against rereplication.
|
| |
PLoS Comput Biol,
6,
e1000783.
|
 |
|
|
|
|
 |
A.D.Almeida,
H.M.Wise,
C.J.Hindley,
M.K.Slevin,
R.S.Hartley,
and
A.Philpott
(2010).
The F-box protein Cdc4/Fbxw7 is a novel regulator of neural crest development in Xenopus laevis.
|
| |
Neural Dev,
5,
1.
|
 |
|
|
|
|
 |
C.Kox,
M.Zimmermann,
M.Stanulla,
S.Leible,
M.Schrappe,
W.D.Ludwig,
R.Koehler,
G.Tolle,
O.R.Bandapalli,
S.Breit,
M.U.Muckenthaler,
and
A.E.Kulozik
(2010).
The favorable effect of activating NOTCH1 receptor mutations on long-term outcome in T-ALL patients treated on the ALL-BFM 2000 protocol can be separated from FBXW7 loss of function.
|
| |
Leukemia,
24,
2005-2013.
|
 |
|
|
|
|
 |
C.U.Stirnimann,
E.Petsalaki,
R.B.Russell,
and
C.W.Müller
(2010).
WD40 proteins propel cellular networks.
|
| |
Trends Biochem Sci,
35,
565-574.
|
 |
|
|
|
|
 |
D.C.Scott,
J.K.Monda,
C.R.Grace,
D.M.Duda,
R.W.Kriwacki,
T.Kurz,
and
B.A.Schulman
(2010).
A dual E3 mechanism for Rub1 ligation to Cdc53.
|
| |
Mol Cell,
39,
784-796.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Liu,
and
R.Nussinov
(2010).
Molecular dynamics reveal the essential role of linker motions in the function of cullin-RING E3 ligases.
|
| |
J Mol Biol,
396,
1508-1523.
|
 |
|
|
|
|
 |
J.R.Lydeard,
and
J.W.Harper
(2010).
Inhibitors for E3 ubiquitin ligases.
|
| |
Nat Biotechnol,
28,
682-684.
|
 |
|
|
|
|
 |
K.M.Crusio,
B.King,
L.B.Reavie,
and
I.Aifantis
(2010).
The ubiquitous nature of cancer: the role of the SCF(Fbw7) complex in development and transformation.
|
| |
Oncogene,
29,
4865-4873.
|
 |
|
|
|
|
 |
L.Owens,
S.Simanski,
C.Squire,
A.Smith,
J.Cartzendafner,
V.Cavett,
J.Caldwell Busby,
T.Sato,
and
N.G.Ayad
(2010).
Activation domain-dependent degradation of somatic Wee1 kinase.
|
| |
J Biol Chem,
285,
6761-6769.
|
 |
|
|
|
|
 |
M.Sadowski,
R.Suryadinata,
X.Lai,
J.Heierhorst,
and
B.Sarcevic
(2010).
Molecular basis for lysine specificity in the yeast ubiquitin-conjugating enzyme Cdc34.
|
| |
Mol Cell Biol,
30,
2316-2329.
|
 |
|
|
|
|
 |
M.Z.Bao,
T.R.Shock,
and
H.D.Madhani
(2010).
Multisite phosphorylation of the Saccharomyces cerevisiae filamentous growth regulator Tec1 is required for its recognition by the E3 ubiquitin ligase adaptor Cdc4 and its subsequent destruction in vivo.
|
| |
Eukaryot Cell,
9,
31-36.
|
 |
|
|
|
|
 |
N.Pashkova,
L.Gakhar,
S.C.Winistorfer,
L.Yu,
S.Ramaswamy,
and
R.C.Piper
(2010).
WD40 repeat propellers define a ubiquitin-binding domain that regulates turnover of F box proteins.
|
| |
Mol Cell,
40,
433-443.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Radivojac,
V.Vacic,
C.Haynes,
R.R.Cocklin,
A.Mohan,
J.W.Heyen,
M.G.Goebl,
and
L.M.Iakoucheva
(2010).
Identification, analysis, and prediction of protein ubiquitination sites.
|
| |
Proteins,
78,
365-380.
|
 |
|
|
|
|
 |
S.Akhoondi,
L.Lindström,
M.Widschwendter,
M.Corcoran,
J.Bergh,
C.Spruck,
D.Grandér,
and
O.Sangfelt
(2010).
Inactivation of FBXW7/hCDC4-β expression by promoter hypermethylation is associated with favorable prognosis in primary breast cancer.
|
| |
Breast Cancer Res,
12,
R105.
|
 |
|
|
|
|
 |
S.M.Varedi K,
A.C.Ventura,
S.D.Merajver,
and
X.N.Lin
(2010).
Multisite phosphorylation provides an effective and flexible mechanism for switch-like protein degradation.
|
| |
PLoS One,
5,
e14029.
|
 |
|
|
|
|
 |
S.Orlicky,
X.Tang,
V.Neduva,
N.Elowe,
E.D.Brown,
F.Sicheri,
and
M.Tyers
(2010).
An allosteric inhibitor of substrate recognition by the SCF(Cdc4) ubiquitin ligase.
|
| |
Nat Biotechnol,
28,
733-737.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Li,
E.I.Robert,
P.C.van Breugel,
M.Strubin,
and
N.Zheng
(2010).
A promiscuous alpha-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery.
|
| |
Nat Struct Mol Biol,
17,
105-111.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
X.H.Wu,
H.Zhang,
and
Y.D.Wu
(2010).
Is Asp-His-Ser/Thr-Trp tetrad hydrogen-bond network important to WD40-repeat proteins: a statistical and theoretical study.
|
| |
Proteins,
78,
1186-1194.
|
 |
|
|
|
|
 |
A.W.Oliver,
S.Swift,
C.J.Lord,
A.Ashworth,
and
L.H.Pearl
(2009).
Structural basis for recruitment of BRCA2 by PALB2.
|
| |
EMBO Rep,
10,
990-996.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.del Sol,
C.J.Tsai,
B.Ma,
and
R.Nussinov
(2009).
The origin of allosteric functional modulation: multiple pre-existing pathways.
|
| |
Structure,
17,
1042-1050.
|
 |
|
|
|
|
 |
G.Kleiger,
A.Saha,
S.Lewis,
B.Kuhlman,
and
R.J.Deshaies
(2009).
Rapid E2-E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates.
|
| |
Cell,
139,
957-968.
|
 |
|
|
|
|
 |
J.Liu,
and
R.Nussinov
(2009).
The mechanism of ubiquitination in the cullin-RING E3 ligase machinery: conformational control of substrate orientation.
|
| |
PLoS Comput Biol,
5,
e1000527.
|
 |
|
|
|
|
 |
M.Zhuang,
M.F.Calabrese,
J.Liu,
M.B.Waddell,
A.Nourse,
M.Hammel,
D.J.Miller,
H.Walden,
D.M.Duda,
S.N.Seyedin,
T.Hoggard,
J.W.Harper,
K.P.White,
and
B.A.Schulman
(2009).
Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases.
|
| |
Mol Cell,
36,
39-50.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.W.Pierce,
G.Kleiger,
S.O.Shan,
and
R.J.Deshaies
(2009).
Detection of sequential polyubiquitylation on a millisecond timescale.
|
| |
Nature,
462,
615-619.
|
 |
|
|
|
|
 |
Q.Yin,
S.C.Lin,
B.Lamothe,
M.Lu,
Y.C.Lo,
G.Hura,
L.Zheng,
R.L.Rich,
A.D.Campos,
D.G.Myszka,
M.J.Lenardo,
B.G.Darnay,
and
H.Wu
(2009).
E2 interaction and dimerization in the crystal structure of TRAF6.
|
| |
Nat Struct Mol Biol,
16,
658-666.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.J.Deshaies,
and
C.A.Joazeiro
(2009).
RING domain E3 ubiquitin ligases.
|
| |
Annu Rev Biochem,
78,
399-434.
|
 |
|
|
|
|
 |
S.Sonnberg,
S.B.Fleming,
and
A.A.Mercer
(2009).
A truncated two-{alpha}-helix F-box present in poxvirus ankyrin-repeat proteins is sufficient for binding the SCF1 ubiquitin ligase complex.
|
| |
J Gen Virol,
90,
1224-1228.
|
 |
|
|
|
|
 |
T.Uchiki,
H.T.Kim,
B.Zhai,
S.P.Gygi,
J.A.Johnston,
J.P.O'Bryan,
and
A.L.Goldberg
(2009).
The Ubiquitin-interacting Motif Protein, S5a, Is Ubiquitinated by All Types of Ubiquitin Ligases by a Mechanism Different from Typical Substrate Recognition.
|
| |
J Biol Chem,
284,
12622-12632.
|
 |
|
|
|
|
 |
Y.Liu,
S.Mimura,
T.Kishi,
and
T.Kamura
(2009).
A longevity protein, Lag2, interacts with SCF complex and regulates SCF function.
|
| |
EMBO J,
28,
3366-3377.
|
 |
|
|
|
|
 |
Y.Zhang,
Z.Zhao,
and
Y.Xue
(2009).
Roles of proteolysis in plant self-incompatibility.
|
| |
Annu Rev Plant Biol,
60,
21-42.
|
 |
|
|
|
|
 |
Z.A.Wang,
and
D.Kalderon
(2009).
Cyclin E-dependent protein kinase activity regulates niche retention of Drosophila ovarian follicle stem cells.
|
| |
Proc Natl Acad Sci U S A,
106,
21701-21706.
|
 |
|
|
|
|
 |
A.C.Minella,
K.R.Loeb,
A.Knecht,
M.Welcker,
B.J.Varnum-Finney,
I.D.Bernstein,
J.M.Roberts,
and
B.E.Clurman
(2008).
Cyclin E phosphorylation regulates cell proliferation in hematopoietic and epithelial lineages in vivo.
|
| |
Genes Dev,
22,
1677-1689.
|
 |
|
|
|
|
 |
C.Kanei-Ishii,
T.Nomura,
T.Takagi,
N.Watanabe,
K.I.Nakayama,
and
S.Ishii
(2008).
Fbxw7 Acts as an E3 Ubiquitin Ligase That Targets c-Myb for Nemo-like Kinase (NLK)-induced Degradation.
|
| |
J Biol Chem,
283,
30540-30548.
|
 |
|
|
|
|
 |
D.J.Killian,
E.Harvey,
P.Johnson,
M.Otori,
S.Mitani,
and
D.Xue
(2008).
SKR-1, a homolog of Skp1 and a member of the SCF(SEL-10) complex, regulates sex-determination and LIN-12/Notch signaling in C. elegans.
|
| |
Dev Biol,
322,
322-331.
|
 |
|
|
|
|
 |
D.Plesca,
S.Mazumder,
V.Gama,
S.Matsuyama,
and
A.Almasan
(2008).
A C-terminal Fragment of Cyclin E, Generated by Caspase-mediated Cleavage, Is Degraded in the Absence of a Recognizable Phosphodegron.
|
| |
J Biol Chem,
283,
30796-30803.
|
 |
|
|
|
|
 |
D.R.Bosu,
and
E.T.Kipreos
(2008).
Cullin-RING ubiquitin ligases: global regulation and activation cycles.
|
| |
Cell Div,
3,
7.
|
 |
|
|
|
|
 |
L.Hagen,
B.Kavli,
M.M.Sousa,
K.Torseth,
N.B.Liabakk,
O.Sundheim,
J.Pena-Diaz,
M.Otterlei,
O.Hørning,
O.N.Jensen,
H.E.Krokan,
and
G.Slupphaug
(2008).
Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA.
|
| |
EMBO J,
27,
51-61.
|
 |
|
|
|
|
 |
M.Welcker,
and
B.E.Clurman
(2008).
FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation.
|
| |
Nat Rev Cancer,
8,
83-93.
|
 |
|
|
|
|
 |
N.H.Saifee,
and
N.Zheng
(2008).
A ubiquitin-like protein unleashes ubiquitin ligases.
|
| |
Cell,
135,
209-211.
|
 |
|
|
|
|
 |
S.Michael,
G.Travé,
C.Ramu,
C.Chica,
and
T.J.Gibson
(2008).
Discovery of candidate KEN-box motifs using cell cycle keyword enrichment combined with native disorder prediction and motif conservation.
|
| |
Bioinformatics,
24,
453-457.
|
 |
|
|
|
|
 |
T.Mittag,
S.Orlicky,
W.Y.Choy,
X.Tang,
H.Lin,
F.Sicheri,
L.E.Kay,
M.Tyers,
and
J.D.Forman-Kay
(2008).
Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor.
|
| |
Proc Natl Acad Sci U S A,
105,
17772-17777.
|
 |
|
|
|
|
 |
T.Ravid,
and
M.Hochstrasser
(2008).
Diversity of degradation signals in the ubiquitin-proteasome system.
|
| |
Nat Rev Mol Cell Biol,
9,
679-690.
|
 |
|
|
|
|
 |
W.R.Gordon,
K.L.Arnett,
and
S.C.Blacklow
(2008).
The molecular logic of Notch signaling--a structural and biochemical perspective.
|
| |
J Cell Sci,
121,
3109-3119.
|
 |
|
|
|
|
 |
Y.Tan,
O.Sangfelt,
and
C.Spruck
(2008).
The Fbxw7/hCdc4 tumor suppressor in human cancer.
|
| |
Cancer Lett,
271,
1.
|
 |
|
|
|
|
 |
A.D.Capili,
and
C.D.Lima
(2007).
Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways.
|
| |
Curr Opin Struct Biol,
17,
726-735.
|
 |
|
|
|
|
 |
A.N.Bullock,
M.C.Rodriguez,
J.E.Debreczeni,
Z.Songyang,
and
S.Knapp
(2007).
Structure of the SOCS4-ElonginB/C complex reveals a distinct SOCS box interface and the molecular basis for SOCS-dependent EGFR degradation.
|
| |
Structure,
15,
1493-1504.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.O'Neil,
J.Grim,
P.Strack,
S.Rao,
D.Tibbitts,
C.Winter,
J.Hardwick,
M.Welcker,
J.P.Meijerink,
R.Pieters,
G.Draetta,
R.Sears,
B.E.Clurman,
and
A.T.Look
(2007).
FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors.
|
| |
J Exp Med,
204,
1813-1824.
|
 |
|
|
|
|
 |
M.Fujimuro,
S.D.Hayward,
and
H.Yokosawa
(2007).
Molecular piracy: manipulation of the ubiquitin system by Kaposi's sarcoma-associated herpesvirus.
|
| |
Rev Med Virol,
17,
405-422.
|
 |
|
|
|
|
 |
M.G.Smelkinson,
Q.Zhou,
and
D.Kalderon
(2007).
Regulation of Ci-SCFSlimb binding, Ci proteolysis, and hedgehog pathway activity by Ci phosphorylation.
|
| |
Dev Cell,
13,
481-495.
|
 |
|
|
|
|
 |
P.Knipscheer,
and
T.K.Sixma
(2007).
Protein-protein interactions regulate Ubl conjugation.
|
| |
Curr Opin Struct Biol,
17,
665-673.
|
 |
|
|
|
|
 |
T.Köcher,
and
G.Superti-Furga
(2007).
Mass spectrometry-based functional proteomics: from molecular machines to protein networks.
|
| |
Nat Methods,
4,
807-815.
|
 |
|
|
|
|
 |
T.Kishi,
A.Ikeda,
R.Nagao,
and
N.Koyama
(2007).
The SCFCdc4 ubiquitin ligase regulates calcineurin signaling through degradation of phosphorylated Rcn1, an inhibitor of calcineurin.
|
| |
Proc Natl Acad Sci U S A,
104,
17418-17423.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |