spacer
spacer

PDBsum entry 2ovr

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Transcription/cell cycle PDB id
2ovr

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
136 a.a. *
442 a.a. *
Ligands
SER-LEU-ILE-PRO-
TPO-PRO-ASP-LYS
SO4 ×12
Waters ×200
* Residue conservation analysis
PDB id:
2ovr
Name: Transcription/cell cycle
Title: Structure of the skp1-fbw7-cyclinedegn complex
Structure: S-phase kinase-associated protein 1a. Chain: a. Fragment: residues 1-147. Synonym: skp1. Cyclin a/cdk2-associated protein p19. P19a. P19skp1. RNA polymerase ii elongation factor-like protein. Organ of corti protein 2. Ocp-ii protein. Ocp-2. Transcription elongation factor b. Siii. Engineered: yes. F-box/wd repeat protein 7.
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: skp1a, emc19, ocp2, skp1, tceb1l. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693. Gene: fbxw7, fbw7, fbx30, sel10. Synthetic: yes. Other_details: sequence occurs naturally in homo sapiens
Resolution:
2.50Å     R-factor:   0.225     R-free:   0.251
Authors: B.Hao,S.Oehlmann,M.E.Sowa,J.W.Harper,N.P.Pavletich
Key ref:
B.Hao et al. (2007). Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell, 26, 131-143. PubMed id: 17434132 DOI: 10.1016/j.molcel.2007.02.022
Date:
14-Feb-07     Release date:   24-Apr-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P63208  (SKP1_HUMAN) -  S-phase kinase-associated protein 1 from Homo sapiens
Seq:
Struc:
163 a.a.
136 a.a.
Protein chain
Pfam   ArchSchema ?
Q969H0  (FBXW7_HUMAN) -  F-box/WD repeat-containing protein 7 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
707 a.a.
442 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1016/j.molcel.2007.02.022 Mol Cell 26:131-143 (2007)
PubMed id: 17434132  
 
 
Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases.
B.Hao, S.Oehlmann, M.E.Sowa, J.W.Harper, N.P.Pavletich.
 
  ABSTRACT  
 
The ubiquitin-mediated proteolysis of cyclin E plays a central role in cell-cycle progression, and cyclin E accumulation is a common event in cancer. Cyclin E degradation is triggered by multisite phosphorylation, which induces binding to the SCF(Fbw7) ubiquitin ligase complex. Structures of the Skp1-Fbw7 complex bound to cyclin E peptides identify a doubly phosphorylated pThr380/pSer384 cyclin E motif as an optimal, high-affinity degron and a singly phosphorylated pThr62 motif as a low-affinity one. Biochemical data indicate that the closely related yeast SCF(Cdc4) complex recognizes the multisite phosphorylated Sic1 substrate similarly and identify three doubly phosphorylated Sic1 degrons, each capable of high-affinity interactions with two Cdc4 phosphate binding sites. A model that explains the role of multiple cyclin E/Sic1 degrons is provided by the findings that Fbw7 and Cdc4 dimerize, that Fbw7 dimerization enhances the turnover of a weakly associated cyclin E in vivo, and that Cdc4 dimerization increases the rate and processivity of Sic1 ubiquitination in vitro.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Structure of the Skp1-Fbw7-CycE^degC Complex
(A) Overall architecture of the complex, with the secondary structure elements of Skp1, F box, and linker domains labeled. Dotted lines indicate disordered regions.
(B) CycE^degC binds across the narrow face of the Fbw7 β-propeller structure. The eight Fbw7 blades and the strands for one blade are labeled.
(C) Sequence alignment of the cyclin E peptides used in crystallization with other SCF^Fbw7 substrates. Arrow indicates the type II β turn, cylinder the left-handed polyproline II helix, dotted lines disordered regions, and crosses the residues of CycE^degC and CycE^degC that contact Fbw7. The substrate residues that match the structure-based degron motif ( -X- - - -pT/S-P-P-X-pS/T, with representing a hydrophobic residue and X any amino acid) are highlighted in yellow.
Figure 2.
Figure 2. Cyclin E-Fbw7 Contacts in the Skp1-Fbw7-CycE^degC and Skp1-Fbw7-CycE^degN Complexes
(A) Close-up view of the Fbw7-CycE^degC interface showing interacting amino acids of Fbw7 (pink) and CycE^degC (light blue). Hydrogen bonds are shown as white dotted lines. The Fbw7 blade strands that provide cyclin E contacts are labeled.
(B) Close-up view of the Fbw7-CycE^degN interface.
(C) Molecular surface representation of the WD40 domain colored according to conservation among Fbw7 13 orthologs and the Cdc4 and Pop1 homologs (Figure S1).
 
  The above figures are reprinted by permission from Cell Press: Mol Cell (2007, 26, 131-143) copyright 2007.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
23314252 N.A.Lyons, B.R.Fonslow, J.K.Diedrich, J.R.Yates, and D.O.Morgan (2013).
Sequential primed kinases create a damage-responsive phosphodegron on Eco1.
  Nat Struct Mol Biol, 20, 194-201.  
23314863 A.Werner, A.Disanza, N.Reifenberger, G.Habeck, J.Becker, M.Calabrese, H.Urlaub, H.Lorenz, B.Schulman, G.Scita, and F.Melchior (2012).
SCF(Fbxw5) mediates transient degradation of actin remodeller Eps8 to allow proper mitotic progression.
  Nat Cell Biol, 15, 179-188.  
22388891 L.Busino, S.E.Millman, L.Scotto, C.A.Kyratsous, V.Basrur, O.O'Connor, A.Hoffmann, K.S.Elenitoba-Johnson, and M.Pagano (2012).
Fbxw7α- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma.
  Nat Cell Biol, 14, 375-385.  
21468892 C.Xu, and J.Min (2011).
Structure and function of WD40 domain proteins.
  Protein Cell, 2, 202-214.
PDB codes: 3e0c 3fm0 3i2n 3ow8
21288713 D.M.Duda, D.C.Scott, M.F.Calabrese, E.S.Zimmerman, N.Zheng, and B.A.Schulman (2011).
Structural regulation of cullin-RING ubiquitin ligase complexes.
  Curr Opin Struct Biol, 21, 257-264.  
21993622 M.Kõivomägi, E.Valk, R.Venta, A.Iofik, M.Lepiku, E.R.Balog, S.M.Rubin, D.O.Morgan, and M.Loog (2011).
Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase.
  Nature, 480, 128-131.  
21549314 N.A.Lyons, and D.O.Morgan (2011).
Cdk1-dependent destruction of eco1 prevents cohesion establishment after s phase.
  Mol Cell, 42, 378-389.  
21261399 S.Marjan Varedi K, P.J.Woolf, and X.N.Lin (2011).
Minimum protein oscillator based on multisite phosphorylation∕dephosphorylation.
  IET Syst Biol, 5, 27.  
21370976 Z.Hua, and R.D.Vierstra (2011).
The cullin-RING ubiquitin-protein ligases.
  Annu Rev Plant Biol, 62, 299-334.  
20485558 A.Brümmer, C.Salazar, V.Zinzalla, L.Alberghina, and T.Höfer (2010).
Mathematical modelling of DNA replication reveals a trade-off between coherence of origin activation and robustness against rereplication.
  PLoS Comput Biol, 6, e1000783.  
20047651 A.D.Almeida, H.M.Wise, C.J.Hindley, M.K.Slevin, R.S.Hartley, and A.Philpott (2010).
The F-box protein Cdc4/Fbxw7 is a novel regulator of neural crest development in Xenopus laevis.
  Neural Dev, 5, 1.  
20944675 C.Kox, M.Zimmermann, M.Stanulla, S.Leible, M.Schrappe, W.D.Ludwig, R.Koehler, G.Tolle, O.R.Bandapalli, S.Breit, M.U.Muckenthaler, and A.E.Kulozik (2010).
The favorable effect of activating NOTCH1 receptor mutations on long-term outcome in T-ALL patients treated on the ALL-BFM 2000 protocol can be separated from FBXW7 loss of function.
  Leukemia, 24, 2005-2013.  
20451393 C.U.Stirnimann, E.Petsalaki, R.B.Russell, and C.W.Müller (2010).
WD40 proteins propel cellular networks.
  Trends Biochem Sci, 35, 565-574.  
20832729 D.C.Scott, J.K.Monda, C.R.Grace, D.M.Duda, R.W.Kriwacki, T.Kurz, and B.A.Schulman (2010).
A dual E3 mechanism for Rub1 ligation to Cdc53.
  Mol Cell, 39, 784-796.
PDB codes: 3o2p 3o2u 3o6b
20083119 J.Liu, and R.Nussinov (2010).
Molecular dynamics reveal the essential role of linker motions in the function of cullin-RING E3 ligases.
  J Mol Biol, 396, 1508-1523.  
20622837 J.R.Lydeard, and J.W.Harper (2010).
Inhibitors for E3 ubiquitin ligases.
  Nat Biotechnol, 28, 682-684.  
20543859 K.M.Crusio, B.King, L.B.Reavie, and I.Aifantis (2010).
The ubiquitous nature of cancer: the role of the SCF(Fbw7) complex in development and transformation.
  Oncogene, 29, 4865-4873.  
20038582 L.Owens, S.Simanski, C.Squire, A.Smith, J.Cartzendafner, V.Cavett, J.Caldwell Busby, T.Sato, and N.G.Ayad (2010).
Activation domain-dependent degradation of somatic Wee1 kinase.
  J Biol Chem, 285, 6761-6769.  
20194622 M.Sadowski, R.Suryadinata, X.Lai, J.Heierhorst, and B.Sarcevic (2010).
Molecular basis for lysine specificity in the yeast ubiquitin-conjugating enzyme Cdc34.
  Mol Cell Biol, 30, 2316-2329.  
19897738 M.Z.Bao, T.R.Shock, and H.D.Madhani (2010).
Multisite phosphorylation of the Saccharomyces cerevisiae filamentous growth regulator Tec1 is required for its recognition by the E3 ubiquitin ligase adaptor Cdc4 and its subsequent destruction in vivo.
  Eukaryot Cell, 9, 31-36.  
21070969 N.Pashkova, L.Gakhar, S.C.Winistorfer, L.Yu, S.Ramaswamy, and R.C.Piper (2010).
WD40 repeat propellers define a ubiquitin-binding domain that regulates turnover of F box proteins.
  Mol Cell, 40, 433-443.
PDB code: 3odt
19722269 P.Radivojac, V.Vacic, C.Haynes, R.R.Cocklin, A.Mohan, J.W.Heyen, M.G.Goebl, and L.M.Iakoucheva (2010).
Identification, analysis, and prediction of protein ubiquitination sites.
  Proteins, 78, 365-380.  
21122106 S.Akhoondi, L.Lindström, M.Widschwendter, M.Corcoran, J.Bergh, C.Spruck, D.Grandér, and O.Sangfelt (2010).
Inactivation of FBXW7/hCDC4-β expression by promoter hypermethylation is associated with favorable prognosis in primary breast cancer.
  Breast Cancer Res, 12, R105.  
21179196 S.M.Varedi K, A.C.Ventura, S.D.Merajver, and X.N.Lin (2010).
Multisite phosphorylation provides an effective and flexible mechanism for switch-like protein degradation.
  PLoS One, 5, e14029.  
20581844 S.Orlicky, X.Tang, V.Neduva, N.Elowe, E.D.Brown, F.Sicheri, and M.Tyers (2010).
An allosteric inhibitor of substrate recognition by the SCF(Cdc4) ubiquitin ligase.
  Nat Biotechnol, 28, 733-737.
PDB code: 3mks
19966799 T.Li, E.I.Robert, P.C.van Breugel, M.Strubin, and N.Zheng (2010).
A promiscuous alpha-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery.
  Nat Struct Mol Biol, 17, 105-111.
PDB codes: 3i7h 3i7k 3i7l 3i7n 3i7o 3i7p 3i89 3i8c 3i8e
19927323 X.H.Wu, H.Zhang, and Y.D.Wu (2010).
Is Asp-His-Ser/Thr-Trp tetrad hydrogen-bond network important to WD40-repeat proteins: a statistical and theoretical study.
  Proteins, 78, 1186-1194.  
19609323 A.W.Oliver, S.Swift, C.J.Lord, A.Ashworth, and L.H.Pearl (2009).
Structural basis for recruitment of BRCA2 by PALB2.
  EMBO Rep, 10, 990-996.
PDB codes: 2w18 3eu7
19679084 A.del Sol, C.J.Tsai, B.Ma, and R.Nussinov (2009).
The origin of allosteric functional modulation: multiple pre-existing pathways.
  Structure, 17, 1042-1050.  
19945379 G.Kleiger, A.Saha, S.Lewis, B.Kuhlman, and R.J.Deshaies (2009).
Rapid E2-E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates.
  Cell, 139, 957-968.  
19798438 J.Liu, and R.Nussinov (2009).
The mechanism of ubiquitination in the cullin-RING E3 ligase machinery: conformational control of substrate orientation.
  PLoS Comput Biol, 5, e1000527.  
19818708 M.Zhuang, M.F.Calabrese, J.Liu, M.B.Waddell, A.Nourse, M.Hammel, D.J.Miller, H.Walden, D.M.Duda, S.N.Seyedin, T.Hoggard, J.W.Harper, K.P.White, and B.A.Schulman (2009).
Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases.
  Mol Cell, 36, 39-50.
PDB codes: 3hqh 3hqi 3hql 3hqm 3hsv 3htm 3hu6 3hve 3ivq 3ivv
19956254 N.W.Pierce, G.Kleiger, S.O.Shan, and R.J.Deshaies (2009).
Detection of sequential polyubiquitylation on a millisecond timescale.
  Nature, 462, 615-619.  
19465916 Q.Yin, S.C.Lin, B.Lamothe, M.Lu, Y.C.Lo, G.Hura, L.Zheng, R.L.Rich, A.D.Campos, D.G.Myszka, M.J.Lenardo, B.G.Darnay, and H.Wu (2009).
E2 interaction and dimerization in the crystal structure of TRAF6.
  Nat Struct Mol Biol, 16, 658-666.
PDB codes: 3hcs 3hct 3hcu
19489725 R.J.Deshaies, and C.A.Joazeiro (2009).
RING domain E3 ubiquitin ligases.
  Annu Rev Biochem, 78, 399-434.  
19264588 S.Sonnberg, S.B.Fleming, and A.A.Mercer (2009).
A truncated two-{alpha}-helix F-box present in poxvirus ankyrin-repeat proteins is sufficient for binding the SCF1 ubiquitin ligase complex.
  J Gen Virol, 90, 1224-1228.  
19240029 T.Uchiki, H.T.Kim, B.Zhai, S.P.Gygi, J.A.Johnston, J.P.O'Bryan, and A.L.Goldberg (2009).
The Ubiquitin-interacting Motif Protein, S5a, Is Ubiquitinated by All Types of Ubiquitin Ligases by a Mechanism Different from Typical Substrate Recognition.
  J Biol Chem, 284, 12622-12632.  
19763088 Y.Liu, S.Mimura, T.Kishi, and T.Kamura (2009).
A longevity protein, Lag2, interacts with SCF complex and regulates SCF function.
  EMBO J, 28, 3366-3377.  
19575579 Y.Zhang, Z.Zhao, and Y.Xue (2009).
Roles of proteolysis in plant self-incompatibility.
  Annu Rev Plant Biol, 60, 21-42.  
19966222 Z.A.Wang, and D.Kalderon (2009).
Cyclin E-dependent protein kinase activity regulates niche retention of Drosophila ovarian follicle stem cells.
  Proc Natl Acad Sci U S A, 106, 21701-21706.  
18559482 A.C.Minella, K.R.Loeb, A.Knecht, M.Welcker, B.J.Varnum-Finney, I.D.Bernstein, J.M.Roberts, and B.E.Clurman (2008).
Cyclin E phosphorylation regulates cell proliferation in hematopoietic and epithelial lineages in vivo.
  Genes Dev, 22, 1677-1689.  
18765672 C.Kanei-Ishii, T.Nomura, T.Takagi, N.Watanabe, K.I.Nakayama, and S.Ishii (2008).
Fbxw7 Acts as an E3 Ubiquitin Ligase That Targets c-Myb for Nemo-like Kinase (NLK)-induced Degradation.
  J Biol Chem, 283, 30540-30548.  
18718460 D.J.Killian, E.Harvey, P.Johnson, M.Otori, S.Mitani, and D.Xue (2008).
SKR-1, a homolog of Skp1 and a member of the SCF(SEL-10) complex, regulates sex-determination and LIN-12/Notch signaling in C. elegans.
  Dev Biol, 322, 322-331.  
18784078 D.Plesca, S.Mazumder, V.Gama, S.Matsuyama, and A.Almasan (2008).
A C-terminal Fragment of Cyclin E, Generated by Caspase-mediated Cleavage, Is Degraded in the Absence of a Recognizable Phosphodegron.
  J Biol Chem, 283, 30796-30803.  
18282298 D.R.Bosu, and E.T.Kipreos (2008).
Cullin-RING ubiquitin ligases: global regulation and activation cycles.
  Cell Div, 3, 7.  
18079698 L.Hagen, B.Kavli, M.M.Sousa, K.Torseth, N.B.Liabakk, O.Sundheim, J.Pena-Diaz, M.Otterlei, O.Hørning, O.N.Jensen, H.E.Krokan, and G.Slupphaug (2008).
Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA.
  EMBO J, 27, 51-61.  
18094723 M.Welcker, and B.E.Clurman (2008).
FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation.
  Nat Rev Cancer, 8, 83-93.  
18957195 N.H.Saifee, and N.Zheng (2008).
A ubiquitin-like protein unleashes ubiquitin ligases.
  Cell, 135, 209-211.  
18184688 S.Michael, G.Travé, C.Ramu, C.Chica, and T.J.Gibson (2008).
Discovery of candidate KEN-box motifs using cell cycle keyword enrichment combined with native disorder prediction and motif conservation.
  Bioinformatics, 24, 453-457.  
19008353 T.Mittag, S.Orlicky, W.Y.Choy, X.Tang, H.Lin, F.Sicheri, L.E.Kay, M.Tyers, and J.D.Forman-Kay (2008).
Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor.
  Proc Natl Acad Sci U S A, 105, 17772-17777.  
18698327 T.Ravid, and M.Hochstrasser (2008).
Diversity of degradation signals in the ubiquitin-proteasome system.
  Nat Rev Mol Cell Biol, 9, 679-690.  
18799787 W.R.Gordon, K.L.Arnett, and S.C.Blacklow (2008).
The molecular logic of Notch signaling--a structural and biochemical perspective.
  J Cell Sci, 121, 3109-3119.  
18541364 Y.Tan, O.Sangfelt, and C.Spruck (2008).
The Fbxw7/hCdc4 tumor suppressor in human cancer.
  Cancer Lett, 271, 1.  
17919899 A.D.Capili, and C.D.Lima (2007).
Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways.
  Curr Opin Struct Biol, 17, 726-735.  
17997974 A.N.Bullock, M.C.Rodriguez, J.E.Debreczeni, Z.Songyang, and S.Knapp (2007).
Structure of the SOCS4-ElonginB/C complex reveals a distinct SOCS box interface and the molecular basis for SOCS-dependent EGFR degradation.
  Structure, 15, 1493-1504.
PDB code: 2izv
17646409 J.O'Neil, J.Grim, P.Strack, S.Rao, D.Tibbitts, C.Winter, J.Hardwick, M.Welcker, J.P.Meijerink, R.Pieters, G.Draetta, R.Sears, B.E.Clurman, and A.T.Look (2007).
FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors.
  J Exp Med, 204, 1813-1824.  
17688306 M.Fujimuro, S.D.Hayward, and H.Yokosawa (2007).
Molecular piracy: manipulation of the ubiquitin system by Kaposi's sarcoma-associated herpesvirus.
  Rev Med Virol, 17, 405-422.  
17925225 M.G.Smelkinson, Q.Zhou, and D.Kalderon (2007).
Regulation of Ci-SCFSlimb binding, Ci proteolysis, and hedgehog pathway activity by Ci phosphorylation.
  Dev Cell, 13, 481-495.  
17933515 P.Knipscheer, and T.K.Sixma (2007).
Protein-protein interactions regulate Ubl conjugation.
  Curr Opin Struct Biol, 17, 665-673.  
17901870 T.Köcher, and G.Superti-Furga (2007).
Mass spectrometry-based functional proteomics: from molecular machines to protein networks.
  Nat Methods, 4, 807-815.  
17954914 T.Kishi, A.Ikeda, R.Nagao, and N.Koyama (2007).
The SCFCdc4 ubiquitin ligase regulates calcineurin signaling through degradation of phosphorylated Rcn1, an inhibitor of calcineurin.
  Proc Natl Acad Sci U S A, 104, 17418-17423.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer