spacer
spacer

PDBsum entry 2nz0

Go to PDB code: 
protein metals Protein-protein interface(s) links
Membrane protein PDB id
2nz0

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
170 a.a. *
136 a.a. *
Metals
_CA ×4
_ZN ×2
* Residue conservation analysis
PDB id:
2nz0
Name: Membrane protein
Title: Crystal structure of potassium channel kv4.3 in complex with its regulatory subunit kchip1
Structure: Kv channel-interacting protein 1. Chain: a, c. Fragment: n-terminal deletion domain. Synonym: kchip1, a-type potassium channel modulatory protein 1, potassium channel-interacting protein 1, vesicle apc-binding protein. Engineered: yes. Potassium voltage-gated channel subfamily d member 3. Chain: b, d. Fragment: n-terminal domain (residues 6-145).
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: kchip1. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Strain: k-12. Gene: kv4.3.
Resolution:
3.20Å     R-factor:   0.265     R-free:   0.310
Authors: H.Wang,Y.Yan,Y.Shen,L.Chen,K.Wang
Key ref:
H.Wang et al. (2007). Structural basis for modulation of Kv4 K+ channels by auxiliary KChIP subunits. Nat Neurosci, 10, 32-39. PubMed id: 17187064 DOI: 10.1038/nn1822
Date:
22-Nov-06     Release date:   26-Dec-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q9NZI2  (KCIP1_HUMAN) -  Kv channel-interacting protein 1 from Homo sapiens
Seq:
Struc:
227 a.a.
170 a.a.*
Protein chains
Pfam   ArchSchema ?
Q9UK17  (KCND3_HUMAN) -  Potassium voltage-gated channel subfamily D member 3 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
655 a.a.
136 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1038/nn1822 Nat Neurosci 10:32-39 (2007)
PubMed id: 17187064  
 
 
Structural basis for modulation of Kv4 K+ channels by auxiliary KChIP subunits.
H.Wang, Y.Yan, Q.Liu, Y.Huang, Y.Shen, L.Chen, Y.Chen, Q.Yang, Q.Hao, K.Wang, J.Chai.
 
  ABSTRACT  
 
KChIPs coassemble with pore-forming Kv4 alpha subunits to form a native complex in the brain and heart and regulate the expression and gating properties of Kv4 K(+) channels, but the mechanisms underlying these processes are unknown. Here we report a co-crystal structure of the complex of human Kv4.3 N-terminus and KChIP1 at a 3.2-A resolution. The structure reveals a unique clamping action of the complex, in which a single KChIP1 molecule, as a monomer, laterally clamps two neighboring Kv4.3 N-termini in a 4:4 manner, forming an octamer. The proximal N-terminal peptide of Kv4.3 is sequestered by its binding to an elongated groove on the surface of KChIP1, which is indispensable for the modulation of Kv4.3 by KChIP1, and the same KChIP1 molecule binds to an adjacent T1 domain to stabilize the tetrameric Kv4.3 channels. Taken together with biochemical and functional data, our findings provide a structural basis for the modulation of Kv4 by KChIPs.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. The overall architecture of the KChIP1–Kv4.3N complex. All panels have the same color codes, with some secondary structural elements labeled specifically. (a) Schematic representation of the complex structure in one asymmetric unit. Two KChIP1 and two Kv4.3 molecules are shown in orange and blue, respectively. (b) The 4:4 complex of KChIP1-Kv4.3N shown was generated from the complex in a through symmetric operations. The complex in this panel has the same size as the one shown in Figure 6a. (c) One KChIP1 molecule interacts simultaneously with two Kv4.3Ns. In the complex, each KChIP1 molecule not only binds to the N-terminal peptide of one Kv4.3 but also interacts with an adjacent Kv4.3 T1 domain, forming two contact interfaces; the first interface is shown in the red frame and second interface is shown in the blue frame. (d) A cartoon of the KChIP1-Kv4.3N complex in 4:4 showing the clamping effect of KChIP1 molecule on the tetramer of Kv4.3.
Figure 6.
Figure 6. Comparison of the modeled Kv4.3-KChIP1 channel complex with Kv1.2-Kv 2. (a) Side views of Kv1.2–Kv4.3 T1-KChIP complex in which the Kv4.3 T1 domain fused with transmembrane-spanning domains of Kv1.2 (left) and Kv1.2-Kv 2 complex (right). The tetrameric subunits of Kv1.2 channels are labeled in cyan, yellow, pink and green, respectively. KChIP1 and Kv 2 are labeled in blue and wheat, respectively. (b) Top views of a, showing KChIPs positioned between two adjacent T1 domains (left) and Kv 2 beneath the T1 domains (right).
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Neurosci (2007, 10, 32-39) copyright 2007.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20154682 D.Anderson, W.H.Mehaffey, M.Iftinca, R.Rehak, J.D.Engbers, S.Hameed, G.W.Zamponi, and R.W.Turner (2010).
Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes.
  Nat Neurosci, 13, 333-337.  
20499050 L.Zhang, C.Q.Xu, Y.Hong, J.L.Zhang, Y.Liu, M.Zhao, Y.X.Cao, Y.J.Lu, B.F.Yang, and H.L.Shan (2010).
Propranolol regulates cardiac transient outward potassium channel in rat myocardium via cAMP/PKA after short-term but not after long-term ischemia.
  Naunyn Schmiedebergs Arch Pharmacol, 382, 63-71.  
19619557 N.Niwa, and J.M.Nerbonne (2010).
Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation.
  J Mol Cell Cardiol, 48, 12-25.  
19690160 A.Lvov, D.Greitzer, S.Berlin, D.Chikvashvili, S.Tsuk, I.Lotan, and I.Michaelevski (2009).
Rearrangements in the relative orientation of cytoplasmic domains induced by a membrane-anchored protein mediate modulations in Kv channel gating.
  J Biol Chem, 284, 28276-28291.  
19357248 C.V.DeSimone, Y.Lu, V.E.Bondarenko, and M.J.Morales (2009).
S3b amino acid substitutions and ancillary subunits alter the affinity of Heteropoda venatoria toxin 2 for Kv4.3.
  Mol Pharmacol, 76, 125-133.  
19441798 E.Seikel, and J.S.Trimmer (2009).
Convergent modulation of Kv4.2 channel alpha subunits by structurally distinct DPPX and KChIP auxiliary subunits.
  Biochemistry, 48, 5721-5730.  
19007856 J.Maffie, T.Blenkinsop, and B.Rudy (2009).
A novel DPP6 isoform (DPP6-E) can account for differences between neuronal and reconstituted A-type K(+) channels.
  Neurosci Lett, 449, 189-194.  
19676137 K.McNicholas, T.Chen, and C.A.Abbott (2009).
Dipeptidyl peptidase (DP) 6 and DP10: novel brain proteins implicated in human health and disease.
  Clin Chem Lab Med, 47, 262-267.  
19251214 M.B.Thomsen, E.A.Sosunov, E.P.Anyukhovsky, N.Ozgen, P.A.Boyden, and M.R.Rosen (2009).
Deleting the accessory subunit KChIP2 results in loss of I(to,f) and increased I(K,slow) that maintains normal action potential configuration.
  Heart Rhythm, 6, 370-377.  
19372218 M.Jiang, X.Xu, Y.Wang, F.Toyoda, X.S.Liu, M.Zhang, R.B.Robinson, and G.N.Tseng (2009).
Dynamic Partnership between KCNQ1 and KCNE1 and Influence on Cardiac IKs Current Amplitude by KCNE2.
  J Biol Chem, 284, 16452-16462.  
19109250 P.Liang, H.Wang, H.Chen, Y.Cui, L.Gu, J.Chai, and K.Wang (2009).
Structural Insights into KChIP4a Modulation of Kv4.3 Inactivation.
  J Biol Chem, 284, 4960-4967.
PDB code: 3dd4
19138172 S.E.Flowerdew, and R.D.Burgoyne (2009).
A VAMP7/Vti1a SNARE complex distinguishes a non-conventional traffic route to the cell surface used by KChIP1 and Kv4 potassium channels.
  Biochem J, 418, 529-540.  
19550036 Y.S.Liao, K.C.Chen, and L.S.Chang (2009).
Functional role of EF-hands 3 and 4 in membrane-binding of KChIP1.
  J Biosci, 34, 203-211.  
18058018 A.C.Yu, Y.Wan, D.H.Chui, C.L.Cui, F.Luo, K.W.Wang, X.M.Wang, Y.Wang, L.Z.Wu, G.G.Xing, and J.S.Han (2008).
The Neuroscience Research Institute at Peking University: a place for the solution of pain and drug abuse.
  Cell Mol Neurobiol, 28, 13-19.  
18542995 A.Lvov, D.Chikvashvili, I.Michaelevski, and I.Lotan (2008).
VAMP2 interacts directly with the N terminus of Kv2.1 to enhance channel inactivation.
  Pflugers Arch, 456, 1121-1136.  
18957440 H.H.Jerng, and P.J.Pfaffinger (2008).
Multiple Kv Channel-interacting Proteins Contain an N-terminal Transmembrane Domain That Regulates Kv4 Channel Trafficking and Gating.
  J Biol Chem, 283, 36046-36059.  
18364354 H.Soh, and S.A.Goldstein (2008).
I SA channel complexes include four subunits each of DPP6 and Kv4.2.
  J Biol Chem, 283, 15072-15077.  
18347833 J.Bøkenes, J.M.Aronsen, J.A.Birkeland, U.L.Henriksen, W.E.Louch, I.Sjaastad, and O.M.Sejersted (2008).
Slow contractions characterize failing rat hearts.
  Basic Res Cardiol, 103, 328-344.  
17981906 J.Barghaan, M.Tozakidou, H.Ehmke, and R.Bähring (2008).
Role of N-terminal domain and accessory subunits in controlling deactivation-inactivation coupling of Kv4.2 channels.
  Biophys J, 94, 1276-1294.  
  18667548 J.Kim, M.S.Nadal, A.M.Clemens, M.Baron, S.C.Jung, Y.Misumi, B.Rudy, and D.A.Hoffman (2008).
Kv4 accessory protein DPPX (DPP6) is a critical regulator of membrane excitability in hippocampal CA1 pyramidal neurons.
  J Neurophysiol, 100, 1835-1847.  
18458082 J.Schwenk, G.Zolles, N.G.Kandias, I.Neubauer, H.Kalbacher, M.Covarrubias, B.Fakler, and D.Bentrop (2008).
NMR analysis of KChIP4a reveals structural basis for control of surface expression of Kv4 channel complexes.
  J Biol Chem, 283, 18937-18946.  
  18299396 K.Dougherty, J.A.De Santiago-Castillo, and M.Covarrubias (2008).
Gating charge immobilization in Kv4.2 channels: the basis of closed-state inactivation.
  J Gen Physiol, 131, 257-273.  
18415675 K.Wang (2008).
Modulation by clamping: Kv4 and KChIP interactions.
  Neurochem Res, 33, 1964-1969.  
18357523 M.Covarrubias, A.Bhattacharji, J.A.De Santiago-Castillo, K.Dougherty, Y.A.Kaulin, T.R.Na-Phuket, and G.Wang (2008).
The neuronal Kv4 channel complex.
  Neurochem Res, 33, 1558-1567.  
18393943 N.Venn, L.P.Haynes, and R.D.Burgoyne (2008).
Specific effects of KChIP3/calsenilin/DREAM, but not KChIPs 1, 2 and 4, on calcium signalling and regulated secretion in PC12 cells.
  Biochem J, 413, 71-80.  
18536731 S.Radicke, M.Vaquero, R.Caballero, R.Gómez, L.Núñez, J.Tamargo, U.Ravens, E.Wettwer, and E.Delpón (2008).
Effects of MiRP1 and DPP6 beta-subunits on the blockade induced by flecainide of Kv4.3/KChIP2 channels.
  Br J Pharmacol, 154, 774-786.  
18261223 T.Y.Nakamura, and W.A.Coetzee (2008).
Functional and pharmacological characterization of a Shal-related K+ channel subunit in Zebrafish.
  BMC Physiol, 8, 2.  
17951301 Y.A.Kaulin, J.A.De Santiago-Castillo, C.A.Rocha, and M.Covarrubias (2008).
Mechanism of the modulation of Kv4:KChIP-1 channels by external K+.
  Biophys J, 94, 1241-1251.  
18401705 Y.Y.Cui, P.Liang, and K.W.Wang (2008).
Enhanced trafficking of tetrameric Kv4.3 channels by KChIP1 clamping.
  Neurochem Res, 33, 2078-2084.  
17521566 D.L.Minor (2007).
The neurobiologist's guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data.
  Neuron, 54, 511-533.  
17331952 G.Wang, C.Strang, P.J.Pfaffinger, and M.Covarrubias (2007).
Zn2+-dependent redox switch in the intracellular T1-T1 interface of a Kv channel.
  J Biol Chem, 282, 13637-13647.  
17720810 T.Strahl, I.G.Huttner, J.D.Lusin, M.Osawa, D.King, J.Thorner, and J.B.Ames (2007).
Structural insights into activation of phosphatidylinositol 4-kinase (Pik1) by yeast frequenin (Frq1).
  J Biol Chem, 282, 30949-30959.
PDB code: 2ju0
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer